
18.06 Problem Set 7
Due Wednesday, 07 November 2007 at 4 pm in 2-106.

Problem 1: Consider the matrix A =


−1 3 −1 1
−3 5 1 −1
10 −10 −10 14
4 −4 −4 8

.

(a) If one eigenvector is v1 =
(
1 1 0 0

)T
, find its eigenvalue λ1.

(b) Show that det(A) = 0. Give another eigenvalue λ2, and find the corresponding
eigenvector v2?
(c) Given the eigenvalue λ3 = 4, write down a linear system which can be soloved
to find the eigenvector v3.
(d) What is the trace of A? Use this to find λ4.

Problem 2: (a) Suppose n×n matrices A, B have the same eigenvalues λ1, · · · , λn,
with the same independent eigenvectors x1, · · · ,xn. Show that A = B.
(b) Find the 2× 2 matrix A having eigenvalues λ1 = 2, λ2 = 5 with corresponding

eigenvectors x1 =

(
1
0

)
and x2 =

(
1
1

)
.

(c) Find two different 2 × 2 matrices A, B, both have the same eigenvalues λ1 =

λ2 = 2, and both have the same eigenvector (only one)

(
1
0

)
.

(d) Find a matrix which has two different sets of independent eigenvectors.

Problem 3: Let A =

(
1 4
2 3

)
.

(a) Find all eigenvalues and corresponding eigenvectors of A.
(b) Calculate A100 (not by multiplying A 100 times!).
(c) Find all eigenvalues and corresponding eigenvectors of A3 − A + I.
(d) For any polynomial function f , what are the eigenvalues and eigenvectors of
f(A)? Prove your statement.

Problem 4: For simplicity, assume that A has n independent eigenvectors, thus
diagonalizable. (However, the statement below also holds for general matrices.)
(a) Since A is diagonalizable, we can write A = SΛS−1 as in class. Substitute this
into the characteristic polynomial

p(A) = (A− λ1I)(A− λ2I) · · · (A− λnI)
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to show that p(A) = 0. (This is called the Cayley-Hamilton theorem.)

(b) Test the Cayley-Hamilton theorem for the matrix A =

(
1 1
1 0

)
. Then write A−1

as a polynomial function of A. [Hint: move the I term to one side of the equation
p(A) = 0 to write A · (something) = I.]
(c) Use the Cayley-Hamilton theorem above to show that, for any invertible matrix
A, A−1 can always be written as a polynomial of A. (Inverting using elimination is
usually much more practical, however!)

Problem 5: (a) If A (an n × n matrix) has n nonnegative eigenvalues λk and
independent eigenvectors xk, and if we define “

√
A” as the matrix with eigenvalues√

λk and the same eigenvectors, show that (
√

A)2 = A.
(b) Given

√
A from part (a), is the only other matrix whose square is A given by

−
√

A? Why or why not?

Problem 6: If λ is an eigenvalue of A, is it also an eigenvalue of AT ? What about
the eigenvectors? Justify your answers.

Problem 7: This problem refers to similar matrices in the sense defined by section
6.6 (page 343) of the text.
(a) A, B, and C are square matrices where A is similar to B and B is similar to C.
Is A similar to C? Why or why not?
(b) If A is similar to Q, where Q is an orthogonal matrix (QT Q = I), is A orthogonal
too? Why or why not?
(c) If A is similar to U where U is triangular, is A triangular too? Why or why not?
(d) If A is similar to B where B is symmetric, is A symmetric too? Why or why
not?
(e) For a given A, does the set of all matrices similar to A form a subspace of the
set of all matrices (under ordinary matrix addition)? Why or why not?

Problem 8: The Pell numbers are the sequence p0 = 0, p1 = 1, pn = 2pn−1 + pn−2

(n > 1).
(a) Analyzing the Pell numbers in the same way that we analyzed the Fibonacci
sequence, via eigenvectors and eigenvalues of a 2 × 2 matrix, find a closed-form
expression for pn.
(b) Prove that the ratio (pn−1 + pn)/pn tends to

√
2 as n grows.

(c) Using Matlab or a calculator, evaluate the ratio from (b) up to n = 10 or so, and
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subtract
√

2 to find the difference for each n. Compare this method of computing√
2 to Newton’s method from 18.01:1 starting with x = 1, repeatedly replace x by

(x + 2/x)/2. Which technique goes faster to
√

2?

Problem 9: This is a Matlab problem on symmetric matrices.
(a) Use Matlab to construct a random 4× 4 symmetric matrix (A = rand(4,4); A

= A’ * A), and find its eigenvalues via the command eig(A).
(b) Construct 1000 random vectors as the columns of X via X = rand(4,1000)

- 0.5; and for each vector xk compute dk = xT
k Axk/x

T
k xk via the command d =

diag(X’*A*X) ./ diag(X’*X); (which computes a vector d of these 1000 ratios).
(c) Find the minimum ratio dk via min(d) and the maximum via max(d). How do
these compare to the eigenvalues? Try increasing from 1000 to 10000 above to see
if your hypothesis holds up.
(d) Find the eigenvectors of A via [S,L] = eig(A): L is the diagonal matrix Λ
of eigenvalues, and S is the matrix whose columns are the eigenvectors, so that
AS = SL. Does S have any special properties? (Hint: try looking at det(S) and
inv(S) compared to S.) (We will see in class, eventually, that these and other nice
properties come from A being symmetric.)
(e) If you wanted to pick a vector x to get the maximum possible d, what would x
and the resulting d be? What about the minimum?
(f) Repeat the process for a 2 × 2 complex asymmetric A and a complex X. This
time, plot the resulting (complex) dk values in the complex plane as black dots, and
the (complex) eigenvalues as red circles:

A = rand(2,2) + i*rand(2,2);

X = rand(2,1000)-0.5+i*(rand(2,1000)-0.5);

d = diag(X’*A*X) ./ diag(X’*X);

v = eig(A)

plot(real(d), imag(d), ’k.’, real(v), imag(v), ’ro’)

You should get an elliptical region with the eigenvalues as foci.
(g) It is hard to see in part (f) that the eigenvalues are foci unless they are close
together, which is unlikely. Construct a random non-symmetric A with eigenvalues
1 + 1i and 1.05 + 0.9i by performing a random 2 × 2 similarity transformation on
D=diag([1+1i,1.05+0.9i]) (i.e. construct a random S and multiply A = inv(S)

* D * S), and then repeat (f) with this A.

1The square root
√

y is the root of f(x) = x2 − y, and Newton’s method replaces x by x −
f(x)/f ′(x) = (x+ y/x)/2. Actually, this technique for square roots was known to the Babylonians
3000 years ago.
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