
18.06 Problem Set 7 - Solutions
Due Wednesday, 07 November 2007 at 4 pm in 2-106.

Problem 1: (12=3+3+3+3) Consider the matrix A =


−1 3 −1 1
−3 5 1 −1
10 −10 −10 14
4 −4 −4 8

.

(a) If one eigenvector is v1 =
(
1 1 0 0

)T
, find its eigenvalue λ1.

Solution Av1 =
(
2 2 0 0

)T
= 2v1, thus λ1 = 2.

(b) Show that det(A) = 0. Give another eigenvalue λ2, and find the corresponding
eigenvector v2.

Solution Since det(A) = 0, and the determinant is the product of all eigenvalues,
we see that there must be a zero eigenvalue. So λ2 = 0. To find v2, we need to
solve the system Av2 = 0. By Gauss elimination, it is easy to see that one solution

is given by v2 =
(
2 1 1 0

)T
(c) Given the eigenvalue λ3 = 4, write down a linear system which can be solved to
find the eigenvector v3.

Solution The system is Av3 = 4v3, or (A− 4I)v3 = 0:
−5 3 −1 1
−3 1 1 −1
10 −10 −14 14
4 −4 −4 4

v3 = 0.

The solution is v3 =
(
0 0 1 1

)T
.

(d) What is the trace of A? Use this to find λ4.

Solution The trace of A is tr(A) = −1 + 5− 10 + 8 = 2. Since

tr(A) = λ1 + λ2 + λ3 + λ4,

the previous parts tell us λ4 = 2− (2 + 0 + 4) = −4.
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Problem 2: (12=3+3+3+3) (a) Suppose n×n matrices A, B have the same eigen-
values λ1, · · · , λn, with the same independent eigenvectors x1, · · · ,xn. Show that
A = B.

Solution Let S be the eigenvector matrix, Γ be the diagonal matrix consists of the
eigenvalues. Then we have A = SΛS−1 and also B = SΛS−1. Thus A = B.

(b) Find the 2× 2 matrix A having eigenvalues λ1 = 2, λ2 = 5 with corresponding

eigenvectors x1 =

(
1
0

)
and x2 =

(
1
1

)
.

Solution We have S =

(
1 1
0 1

)
and Λ =

(
2 0
0 5

)
. Thus

A = SΛS−1 =

(
1 1
0 1

)(
2 0
0 5

)(
1 −1
0 1

)
=

(
2 3
0 5

)
.

(c) Find two different 2 × 2 matrices A, B, both have the same eigenvalues λ1 =

λ2 = 2, and both have the same eigenvector (only one)

(
1
0

)
.

Solution Let A =

(
a b
c d

)
. Since

(
1
0

)
is an eigenvector with eigenvalue 2, we see(

a b
c d

)(
1
0

)
=

(
2
0

)
,

which implies a = 2, c = 0. Since a + d = tr(A) = 2 + 2, we see d = 2. Thus A =(
2 b
0 2

)
. It is very easy to check any such matrix has two eigenvalues λ1 = λ2 = 2.

Finally the condition that A has only one eigenvector implies b 6= 0.

Similarly B has the same form. So we can take different values of b for A and

B. For example, A =

(
2 1
0 2

)
and B =

(
2 3
0 2

)
.

(d) Find a matrix which has two different sets of independent eigenvectors.

Solution For the identity matrix, any set of independent vectors is a set of inde-
pendent eigenvectors.
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Problem 3: (12=3+3+3+3) Let A =

(
1 4
2 3

)
.

(a) Find all eigenvalues and corresponding eigenvectors of A.

Solution The characteristic equation is

λ2 − 4λ− 5 = 0,

thus the eigenvalues are λ1 = 5, λ2 = −1.

For λ1 = 5, the eigenvector v1 is a solution to(
−4 4
2 −2

)
v1 = 0,

which implies v1 =

(
1
1

)
.

For λ1 = −1, the eigenvector v2 is a solution to(
2 4
2 4

)
v2 = 0,

which implies v2 =

(
−2
1

)
.

(b) Calculate A100 (not by multiplying A 100 times!).

Solution We have

A =

(
1 −2
1 1

)(
5 0
0 −1

)(
1 −2
1 1

)−1

,

thus

A100 =

(
1 −2
1 1

)(
5 0
0 −1

)100(
1 −2
1 1

)−1

=

(
1 −2
1 1

)(
5100 0
0 1

)(
1/3 2/3
−1/3 1/3

)
=

(
(5100 + 2)/3 (2 · 5100 − 2)/3
(5100 − 1)/3 (2 · 5100 + 1)/3

)
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(c) Find all eigenvalues and corresponding eigenvectors of A3 − A + I.

Solution Use the formula above, we have

A3 − A + I =

(
1 −2
1 1

)((
5 0
0 −1

)3

−
(

5 0
0 −1

)
+

(
1 0
0 1

))(
1 −2
1 1

)−1

=

(
1 −2
1 1

)((
125 0
0 −1

)
−
(

5 0
0 −1

)
+

(
1 0
0 1

))(
1 −2
1 1

)−1

=

(
1 −2
1 1

)(
121 0
0 1

)(
1 −2
1 1

)−1

Thus the eigenvalues of A3 − A + I are

λ1 = 121 = 53 − 5 + 1, λ2 = 1 = (−1)3 − (−1) + 1.

The corresponding eigenvectors are still v1 =

(
1
1

)
and v2 =

(
−2
1

)
.

(d) For any polynomial function f , what are the eigenvalues and eigenvectors of
f(A)? Prove your statement.

Solution The eigenvalues of f(A) are f(5) and f(−1), with the same eigenvector
above. To prove this, we write

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0.

Then
f(A) = anA

n + an−1A
n−1 + · · ·+ a1A + a0I.

If λ is an eigenvalue of A with eigenvector v, i.e. Av = λv, then we have

A2v = A(Av) = A(λv) = λAv = λ2v,

and in general by induction
Akv = λkv.

This implies

f(A)v = anλ
nv + an−1λ

n−1v + · · ·+ a1λv + a0v = f(λ)v,

which implies that v is also an eigenvector of f(A), which corresponding to the
eigenvalue f(λ).

(Thanks to Brian: In the special case that f(5) = f(−1), any nonzero vector in
the plane will be an eigenvector. In this case it is easy to see that f(A) is in fact a
pure scalar matrix.)
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Problem 4: (10=4+3+3) For simplicity, assume that A has n independent eigen-
vectors, thus diagonalizable. (However, the statement below also holds for general
matrices.)

(a) Since A is diagonalizable, we can write A = SΛS−1 as in class. Substitute this
into the characteristic polynomial

p(A) = (A− λ1I)(A− λ2I) · · · (A− λnI)

to show that p(A) = 0. (This is called the Cayley-Hamilton theorem.)

Solution We have

p(A) =(A− λ1I)(A− λ2I) · · · (A− λnI)

=(SΛS−1 − Sλ1IS−1)(SΛS−1 − Sλ2I)S−1 · · · (SΛS−1 − SλnIS−1)

=S(Λ− λ1I)S−1S(Λ− λ2I)S−1S · · ·S−1S(Λ− λnI)S

=S


0 0 · · · 0
0 λ2 − λ1 · · · 0
· · · · · · · · · · · ·
0 0 · · · λn − λ1




λ1 − λ2 0 · · · 0
0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · λn − λ2



· · ·


λ1 − λn 0 · · · 0

0 λ2 − λn · · · 0
· · · · · · · · · · · ·
0 0 · · · 0

S−1

=S


0 0 · · · 0
0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0

S−1

=0.

(b) Test the Cayley-Hamilton theorem for the matrix A =

(
1 1
1 0

)
. Then write A−1

as a polynomial function of A. [Hint: move the I term to one side of the equation
p(A) = 0 to write A · (something) = I.]

Solution The characteristic polynomial of A is p(λ) = λ2 − λ − 1. Thus we need
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to check A2 − A− I = 0:

A2 − A− I =

(
1 1
1 0

)2

−
(

1 1
1 0

)
−
(

1 0
0 1

)
=

(
2 1
1 1

)
−
(

1 1
1 0

)
−
(

1 0
0 1

)
=

(
0 0
0 0

)
.

From A2 − A− I = 0 we have A2 − A = I. In other words, A(A− I) = I. We
conclude that A−1 = A− I.

(c) Use the Cayley-Hamilton theorem above to show that, for any invertible matrix
A, A−1 can always be written as a polynomial of A. (Inverting using elimination is
usually much more practical, however!)

Solution Suppose A is invertible, then det A 6= 0. From Cayley-Hamilton theorem
we have

p(A) = (A− λ1I)(A− λ2I) · · · (A− λnI) = 0.

Write
p(x) = xn + an−1x

n−1 + · · ·+ a1x + a0,

then
a0 = λ1λ2 · · ·λn = det(A) 6= 0,

and we have
p(A) = An + an−1A

n−1 + · · ·+ a1A + a0I = 0.

Rewrite this as

− 1

a0

An − an−1

a0

An−1 − · · · − a1

a0

A = I,

or

A(− 1

a0

An−1 − an−1

a0

An−2 − · · · − a1

a0

I) = I,

which implies

A−1 = − 1

a0

An−1 − an−1

a0

An−2 − · · · − a1

a0

I.

This completes the proof.
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Problem 5: (10=5+5) (a) If A (an n× n matrix) has n nonnegative eigenvalues
λk and independent eigenvectors xk, and if we define “

√
A” as the matrix with

eigenvalues
√

λk and the same eigenvectors, show that (
√

A)2 = A.

Solution We can decompose A into A = SΛS−1, where S is the matrix consists of
eigenvectors of A, and

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λn


is the diagonal eigenvalue matrix. Then by definition,

√
A is the matrix with S

as its eigenvector matrix, and
√

λi its eigenvalues. In other words, we have
√

A =
S
√

ΛS−1, where

√
Λ =


√

λ1 0 · · · 0
0

√
λ2 · · · 0

· · · · · · · · · · · ·
0 0 · · ·

√
λn

 .

Obviously, we have
√

Λ
√

Λ = Λ, so

(
√

A)2 =
√

A
√

A = S
√

ΛS−1S
√

ΛS−1 = SΛS−1 = A.

(b) Given
√

A from part (a), is the only other matrix whose square is A given by
−
√

A? Why or why not?

Solution No. We can change some (but not all) of the
√

λi above to −
√

λi, then

we will get a new matrix S
√̃

ΛS−1, whose square is A, but it is neither
√

A, nor
−
√

A. So In general there are at least 2n possible matrices whose square is A.

As an example, we can take
√̃

Λ to be
−
√

λ1 0 · · · 0
0

√
λ2 · · · 0

· · · · · · · · · · · ·
0 0 · · ·

√
λn

 .
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Problem 6: (10) If λ is an eigenvalue of A, is it also an eigenvalue of AT ? What
about the eigenvectors? Justify your answers.

Solution The eigenvalues of A must be the eigenvalues of AT . In fact, the charac-
teristic equation for AT is det(AT − λI) = 0. Since

det(AT − λI) = det(AT − λI)T = det(A− λI),

we see that the characteristic equation for AT coincides with the characteristic equa-
tion for A. This implies that the eigenvalues of AT are the same as the eigenvalues
of A.

However, the eigenvectors of AT don’t have to be the same as eigenvectors of
A. In fact, the eigenvector of A corresponding to eigenvalue λ lies in the nullspace
of A− λI, while the eigenvector of AT corresponding to the eigenvalue λ lies in the
left nullspace of A− λI, so they are different in general.

As an example, let

A =

1 0 0
1 1 0
0 0 1

 ,

the both A and AT has eigenvalues λ1 = λ2 = λ3 = 1, the eigenvectors of A are

v1 =

0
1
0

 ,v2 =

0
0
1

 ,

while the eigenvectors of AT are

v1 =

1
0
0

 ,v2 =

0
0
1

 .

Finally we point out that the number of independent eigenvectors of AT is the
same as the number of independent eigenvectors of A. In fact, for each eigenvalue
λ, the number of independent eigenvectors of AT or A both equal n− rank(A−λI),
since rank(A− λI) = rank(AT − λI).
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Problem 7: (10=2+2+2+2+2) This problem refers to similar matrices in the
sense defined by section 6.6 (page 343) of the text.

(a) A, B, and C are square matrices where A is similar to B and B is similar to C.
Is A similar to C? Why or why not?

Solution Yes, A is similar to C.

By definition, A is similar to B means A = PBP−1, and B is similar to C means
B = QCQ−1. Thus we have A = PBP−1 = PQCQ−1P−1 = (PQ)C(PQ)−1. This
implies that A is similar to C.

(b) If A is similar to Q, where Q is an orthogonal matrix (QT Q = I), is A orthogonal
too? Why or why not?

Solution No, A doesn’t have to be orthogonal.

Counterexample: It is easy to check that Q =

(
0 1
1 0

)
is orthogonal, while

A =

(
1 1
0 1

)
Q

(
1 1
0 1

)−1

=

(
1 0
1 −1

)
is not a orthogonal matrix.

(c) If A is similar to U where U is triangular, is A triangular too? Why or why not?

Solution No.

One can use the same example above: A is triangular, Q is similar to A but Q
is not triangular.

(d) If A is similar to B where B is symmetric, is A symmetric too? Why or why
not?

Solution No.

One can use the same example in part (b): Q is symmetric, A is similar to Q
but A is not symmetric.

(e) For a given A, does the set of all matrices similar to A form a subspace of the
set of all matrices (under ordinary matrix addition)? Why or why not?

Solution No.

The zero matrix will not lie in this set. In fact, if the zero matrix is similar to
A, then A = P0P−1 = 0. In other words, the set is a subspace only if A is itself
zero matrix.
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Problem 8: (10=4+3+3) The Pell numbers are the sequence p0 = 0, p1 = 1,
pn = 2pn−1 + pn−2 (n > 1).

(a) Analyzing the Pell numbers in the same way that we analyzed the Fibonacci
sequence, via eigenvectors and eigenvalues of a 2 × 2 matrix, find a closed-form
expression for pn.

Solution Rewrite the equation in matrix form, we have(
pn+1

pn

)
=

(
2 1
1 0

)(
pn

pn−1

)
.

The characteristic equation of the matrix above is

λ2 − 2λ− 1 = 0,

so the eigenvalues are
λ1 = 1 +

√
2, λ2 = 1−

√
2.

The eigenvector corresponds to λ1 is given by(
1−

√
2 1

1 −1−
√

2

)
v1 = 0 =⇒ v1 =

(
1√

2− 1

)
.

Similarly the eigenvector corresponds to λ2 is given by(
1 +

√
2 1

1 −1 +
√

2

)
v2 = 0 =⇒ v2 =

(
1−

√
2

1

)
.

So we have(
2 1
1 0

)
=

(
1 1−

√
2√

2− 1 1

)(
1 +

√
2 0

0 1−
√

2

)(
1 1−

√
2√

2− 1 1

)−1

.

Thus(
2 1
1 0

)n

=

(
1 1−

√
2√

2− 1 1

)(
1 +

√
2 0

0 1−
√

2

)n(
1 1−

√
2√

2− 1 1

)−1

=
1

4− 2
√

2

(
(1 +

√
2)n + (

√
2− 1)2(1−

√
2)n (

√
2− 1)((1 +

√
2)n − (1−

√
2)n)

(
√

2− 1)((1 +
√

2)n − (1−
√

2)n) (
√

2− 1)2(1 +
√

2)n + (1−
√

2)n

)
.

So pn = 1
2
√

2
((1 +

√
2)n − (1−

√
2)n).
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(b) Prove that the ratio (pn−1 + pn)/pn tends to
√

2 as n grows.

Solution Since −1 < 1−
√

2 < 0, from the above expression we see that, for large
n,

pn =
1

2
√

2
((1 +

√
2)n − (1−

√
2)n)

approaches (1 +
√

2)n/2
√

2. Thus pn−1/pn tends to 1/(1 +
√

2) =
√

2 − 1, after
normalizing the denominator. This implies that (pn−1 + pn)/pn tends to

√
2 as n

grows to ∞.

(c) Using MATLAB or a calculator, evaluate the ratio from (b) up to n = 10 or
so, and subtract

√
2 to find the difference for each n. Compare this method of

computing
√

2 to Newton’s method from 18.01:1 starting with x = 1, repeatedly
replace x by (x + 2/x)/2. Which technique goes faster to

√
2?

Solution

We use MATLAB. The ratios from (b) are given by

>> x=0;y=1;z=y;

>> y=2*y+x;x=z;z=y;(x+y)/y-sqrt(2)

ans =

0.0858

>> y=2*y+x;x=z;z=y;(x+y)/y-sqrt(2)

ans =

-0.0142

>> y=2*y+x;x=z;z=y;(x+y)/y-sqrt(2)

ans =

0.0025

>> y=2*y+x;x=z;z=y;(x+y)/y-sqrt(2)

ans =

-4.2046e-04

>> y=2*y+x;x=z;z=y;(x+y)/y-sqrt(2)

ans =

7.2152e-05

>> y=2*y+x;x=z;z=y;(x+y)/y-sqrt(2)

ans =

1The square root
√

y is the root of f(x) = x2 − y, and Newton’s method replaces x by x −
f(x)/f ′(x) = (x+ y/x)/2. Actually, this technique for square roots was known to the Babylonians
3000 years ago.
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-1.2379e-05

>> y=2*y+x;x=z;z=y;(x+y)/y-sqrt(2)

ans =

2.1239e-06

>> y=2*y+x;x=z;z=y;(x+y)/y-sqrt(2)

ans =

-3.6440e-07

>> y=2*y+x;x=z;z=y;(x+y)/y-sqrt(2)

ans =

6.2522e-08

>> y=2*y+x;x=z;z=y;(x+y)/y-sqrt(2)

ans =

-1.0727e-08

>> y=2*y+x;x=z;z=y;(x+y)/y-sqrt(2)

ans =

1.8405e-09

>> y=2*y+x;x=z;z=y;(x+y)/y-sqrt(2)

ans =

-3.1577e-10

while Euler method gives

>> x=1;

>> x=(x+2/x)/2;x-sqrt(2)

ans =

0.0858

>> x=(x+2/x)/2;x-sqrt(2)

ans =

0.0025

>> x=(x+2/x)/2;x-sqrt(2)

ans =

2.1239e-06

>> x=(x+2/x)/2;x-sqrt(2)

ans =

1.5947e-12

>> x=(x+2/x)/2;x-sqrt(2)

ans =
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-2.2204e-16

>> x=(x+2/x)/2;x-sqrt(2)

ans =

-2.2204e-16

>> x=(x+2/x)/2;x-sqrt(2)

ans =

-2.2204e-16

>> x=(x+2/x)/2;x-sqrt(2)

ans =

-2.2204e-16

>> x=(x+2/x)/2;x-sqrt(2)

ans =

-2.2204e-16

>> x=(x+2/x)/2;x-sqrt(2)

ans =

-2.2204e-16

>> x=(x+2/x)/2;x-sqrt(2)

ans =

-2.2204e-16

The Newton’s method is faster. In fact, the difference between the Pell ratios
and

√
2 decreases exponentially (as the other eigenvector disappears), and as a

consquence the number of digits of accuracy (the log of the error) increases linearly
with the number of iterations (”linear convergence”). In contrast, Newton’s method
roughly squares the error or doubles the number of significant digits with each
iteration (”quadratic convergence”), which is far faster. (Of course, the error stops
improving once the machine precision is reached.)
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Problem 9: (14=2+2+2+2+2+2+2) This is a MATLAB problem on symmetric
matrices.

(a) Use MATLAB to construct a random 4× 4 symmetric matrix (A = rand(4,4);

A = A’ * A), and find its eigenvalues via the command eig(A).

Solution The codes

>> A=rand(4,4);A=A’*A

A =

2.3346 1.1384 2.5606 1.4507

1.1384 0.7860 1.2743 0.9531

2.5606 1.2743 2.8147 1.6487

1.4507 0.9531 1.6487 1.8123

>> eig(A)

ans =

0.0009

0.1441

0.7379

6.8648

(b) Construct 1000 random vectors as the columns of X via X = rand(4,1000)

- 0.5; and for each vector xk compute dk = xT
k Axk/x

T
k xk via the command d =

diag(X’*A*X) ./ diag(X’*X); (which computes a vector d of these 1000 ratios).

Solution The codes

>> X=rand(4,1000)-0.5;

>> d=diag(X’*A*X)./diag(X’*X);
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(c) Find the minimum ratio dk via min(d) and the maximum via max(d). How do
these compare to the eigenvalues? Try increasing from 1000 to 10000 above to see
if your hypothesis holds up.

Solution The codes

>> min(d),max(d)

ans =

0.0122

ans =

6.8117

It seems that the minimum dk is close to the smallest eigenvalue of A, and the
maximum dk is close to the largest eigenvalue of A. Moreover, the values of dk are
also bounded below/above by the smallest/largest eigenvalue.

We increase 1000 to 10000, which also implies the above judgement:

>> X=rand(4,10000)-0.5;

>> d=diag(X’*A*X)./diag(X’*X);

>> min(d),max(d)

ans =

0.0050

ans =

6.8451
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(d) Find the eigenvectors of A via [S,L] = eig(A): L is the diagonal matrix Λ
of eigenvalues, and S is the matrix whose columns are the eigenvectors, so that
AS = SL. Does S have any special properties? (Hint: try looking at det(S) and
inv(S) compared to S.) (We will see in class, eventually, that these and other nice
properties come from A being symmetric.)

Solution The codes:

>> [S,L]=eig(A)

S =

0.7196 0.1621 0.3613 0.5705

0.0416 -0.9401 -0.1444 0.3061

-0.6924 0.1247 0.3268 0.6310

0.0321 0.2729 -0.8613 0.4274

L =

0.0009 0 0 0

0 0.1441 0 0

0 0 0.7379 0

0 0 0 6.8648

>> det(S)

ans =

-1

>> inv(S)

ans =

0.7196 0.0416 -0.6924 0.0321

0.1621 -0.9401 0.1247 0.2729

0.3613 -0.1444 0.3268 -0.8613

0.5705 0.3061 0.6310 0.4274
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We can see that S−1 = ST , which means that S is an orthogonal matrix. In
other words, for symmetric matrices, we can choose the eigenvectors such that they
form an orthonormal basis!

(e) If you wanted to pick a vector x to get the maximum possible d, what would x
and the resulting d be? What about the minimum?

Solution We have seen from part (c) that the maximum possible d is the maximum
eigenvalue. So we should take the vector x to be an eigenvector corresponding to
the maximum eigenvalue. Similarly, if we want get the minimum possible d, we need
to take x to be an eigenvector of the minimum eigenvalue.

(f) Repeat the process for a 2 × 2 complex asymmetric A and a complex X. This
time, plot the resulting (complex) dk values in the complex plane as black dots, and
the (complex) eigenvalues as red circles:

A = rand(2,2) + i*rand(2,2);

X = rand(2,1000)-0.5+i*(rand(2,1000)-0.5);

d = diag(X’*A*X) ./ diag(X’*X);

v = eig(A)

plot(real(d), imag(d), ’k.’, real(v), imag(v), ’ro’)

You should get an elliptical region with the eigenvalues as foci.

Solution The codes

>> A=rand(2,2)+i*rand(2,2);

>> X=rand(2,1000)-0.5+i*(rand(2,1000)-0.5);

>> d=diag(X’*A*X)./diag(X’*X);

>> v=eig(A)

v =

0.4377 + 0.2842i

1.2904 + 0.8951i

>> plot(real(d),imag(d),’k.’,real(v),imag(v),’ro’)
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>> axis equal

The output graph is
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Figure 1: numerical range

(g) It is hard to see in part (f) that the eigenvalues are foci unless they are close
together, which is unlikely. Construct a random non-symmetric A with eigenvalues
1 + 1i and 1.05 + 0.9i by performing a random 2 × 2 similarity transformation on
D=diag([1+1i,1.05+0.9i]) (i.e. construct a random S and multiply A = inv(S)

* D * S), and then repeat (f) with this A.

Solution The codes

>> S=rand(2,2);A=inv(S)*diag([1+1*i,1.05+0.9*i])*S;

>> X=rand(2,1000)-0.5+i*(rand(2,1000)-0.5);

>> d=diag(X’*A*X)./diag(X’*X);

>> v=eig(A)

v =
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1.0000 + 1.0000i

1.0500 + 0.9000i

>> plot(real(d),imag(d),’k.’,real(v),imag(v),’ro’)

>> axix equal

The output graph is
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Figure 2: numerical range
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