18.06 Problem Set 5 - Solutions
Due Wednesday, 17 October 2007 at 4 pm in 2-106.

Problem 1: (10) Do problem 22 from section 4.1 (P 193) in your book.
The equation 1 + x93 + x3 + x4 = 0 can be rewritten in the matrix form

(111 1)

Thus P is the nullspace of the 1 by 4 matrix
A=(1 11 1).

This implies that P+ is the row space of A. Obviously a basis of P+ is given by the
vector

—_ = = =

Problem 2: (15=6+3+6) (1) Derive the Fredholm Alternative: If the system Ax =
b has no solution, then argue there is a vector y satisfying

ATy =0 with y'b = 1.

(Hint: b is not in the column space C(A), thus b is not orthogonal to N(AT).)

Suppose the system Ax = b has no solution, in other words, the vector
b does not lie in the column space C(A). Then b is not orthogonal to the nullspace
N(AT). Let p be the orthogonal projection of b onto N(AT), then p # 0. We have

p’b=p'p#0.

Let y = ﬁp, we see that

1
ATy:—T ATp=0
pP'p
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but
y'b = %pr =1
b'p
(2) Check that the following system Ax = b has no solution:
T+2y+2z=2
20 +2y+32=1
3+ 2y +4z =2

We do Gauss elimination:

1 2 2 2 1 2 2 2 1 2 2 2
2231 —-10 -2 -1 -3|—-10 -2 -1 -3},
3 2 4 2 0 -4 -2 —4 0O 0 0 2

which certainly has no solution.
(3) Find a vector y for above system such that ATy =0 and y’b = 1.

From solution to part (1) one need to find the projection of the vector b
onto the N(AT). We compute N(AT):

1 2 2
A=12 2 3
3 2 4
1 2 3 1 2 3 1 2 3
=A"T=(22 2|10 -2 4] [0 -2 —4
2 3 4 0 -1 -2 0 0 O
1
So the nullspace N(AT) is spanned by one vector a = | —2
1
The projection of b on the this line is
a’b  2-2+2 2 12/?3
ala 1+4+1 6 1/3
So the vector y we need is
1 1 1/2
y = p=

T p=|-1
p’p 1/9+4/9+1/9 1/2



Problem 3: (10=2+242+2+2) Justify the following (true) statements:
(1) If AB =0, then the column space of B is in the nullspace of A.

If not, i.e., there is a vector y = Bx lies in the column space of B, but
not in the nullspace of A. Then

(AB)x = A(Bx) # 0,
contradicts with AB = 0.

(2) If A is symmetric matrix, then its column space is perpendicular to its nullspace.

Since A is symmetric, A = AT. So its columm space coincides with its
row space: C(A) = C(AT). This implies that its column space is perpendicular to
its nullspace.

(3) If a subspace S is contained in a subspace V, then S+ contains V+.

Suppose v € V+ i.e., v is perpendicular to any vector in V. In particular,
v is perpendicular to any vector in S, since S C V. This shows that v € S*+. So

Stovt

(4) For any subspace V, (V)1 =V.

By definition, V' is the set of vectors that are perpendicular to all vectors
in V. So any vector in V is perpendicular to all vectors in V+. This implies
V C (V). On the other hand, suppose the dimension of V' is r, then the dimension
of V4 is n—r, and the dimension of (V+)! is again 7. So a basis of V is also a basis
of (V14)L. This implies (V+)* = V.

(Another way: any subspace V is defined by some linear equations, in other
words, V = N(A) is the nullspace for some matrix A. Thus V+ = C(AT) by the
fundamental theorm of linear algebra. Use this theorem again we get (V4)t =
N((AT)T) =N(4)=V)

(The proofs above only work for finite dimensional spaces. However, the state-
ment is true for any closed subspaces in infinitely dimensional vector spaces, and
the proof is much harder.)

(5) If P is a projection matrix, so is [ — P.
Suppose P is the projection matrix onto a subspace V. Then I — P is the

projection matrix that projects onto V+. In fact, for any vector v,
v—([—-P)v=v—-v+ Pv=Pv,

and obviously Pv € V is perpendicular to V.



Problem 4: (10=5+5) (1) Do problem 5 from section 4.2 (P 203) in your book.

We compute

1 -2 -2 1 -2 -2
T 1 1
p =210 2 4 4 |=-|-2 4 4],
aja; 1+4+4 9 4 4 9 9 4 4
44 =2 44 =2
T 1 1
Py =222 404 2=-[4 4 -2
azay 4+4+1 9 _9 1 9\ o 1

Their product is

1 1 -2 =2 1 4 4 =2
P1P2 — § —2 4 4 9
-2 4 4 -2 =2 1

|
S
W

|
[\]

0 00
=10 0 0
000

This product is identically zero, since a; and a, are perpendicular, and thus if

we first project a vector onto aj, then project the projection onto as, we will get the
Zero vector.

(2) Do problem 7 from section 4.2 (P 203) in your book.

The matrix Ps is

4 -2 4 4 -2 4
T 1 1
_ A% 9 1 -2

P, = _ 9 1 -9
4 —2 4] 9\ 4 _—92 4

alaz 4+1+4

Obviously that

1
P1+P2+P3:§

O O O
O © O
O O O
Il
~

Finally we verify that a;, as, ag are orthogonal:

alag=—-2+4-2=0;
alazg=—-2-2+4=0;
alaz=4-2-2=0.




Problem 5: (15=5+5+75) (1) Find the projection matrix P onto the column space
of
1 21
A= <4 8 4) '
By observation it is easy to see that the column space of A is the one

dimensional subspace containing the vector a = ( ) Thus the projection matrix

4
is
T
aa 1
Po=—=— b4 .
ala 17 \4 16
(2) Find the projection matrix Pr onto the row space of the above matrix.

By observation the row space of the matrix A is the one dimensional

1
subspace containing the vector b = | 2 |. Thus the projection matrix is
1
1 21
bb? 1
Pr=—+==12 4 2
T
b’b 6 1 9 1

(3) What is PcAPr? Explain your result.

We calculate

1 (1 4\ (121
PCAPR:T?<4 16)'(4 8 4)'

D=
e
NGRS V)
[EE N

For any vector v, we see v — Prv is always perpendicular to the row space of
A, thus v — Prv € N(A). So A(v — Pgv) = 0, i.e. Av = APgrv. This implies
A = APg. Similarly, Av € C(A) implies PcAv = Av, i.e., A = PcA. So we always
have PcAPR = Pc(APR) = PcA = A.



Problem 6: (10=3+443) Do problem 12 from section 4.3 (P 217) in your book.

() Since

ala=1+1+---+1=m,
a’b=by+by+- - +by

T

We see that the equation a’az = alb is equivalent to the equation

md = by + by + -+ + by,

The solution is given by
L bitbate by
m Y

the mean of the b’s.
(b) We calculate:

e:b—ia:(bl—f,bg—ﬁ,--- ,bm—f),

where Z is the mean above. So the variance is
lel|* = (by — &)* + (by — ) + -+ - + (b — 2)°
=b] + b5+ + b2, —2(by + by + -+ + by )E + mai?
= b + b5 + -+ + b2, — 2m3® + m3?
= b} + b3 + - + b2, — mi’.

The standard deviation is

lel = /03 + 83 + -+ 2, — ma2.
(c) Now
m=3,b = (1,2,6).

So
L+246 _,

3 Y

T =

and
e=(1,2,6)—(3,3,3) = (=2,—1,3).

Obviously p = (3,3, 3) is perpendicular to e:

ple=—-6-3+9=0.



Problem 7: (10=5+5) In this problem you will derive weighted least-squares fits.
In particular, suppose that you have m data points (¢;,b;), that you want to fit to
a line b = C' 4+ Dt. Ordinary least squares would choose C' and D to minimize the
sum-of-squares error »_.(C'+ Dt; — b;)?, as derived in class. However, not all data
points are always created equal: often, real data points come with a margin of error
o; > 0 1in b;. When choosing C' and D, we want to weight the data points less if
they have more error. In particular, we want to choose C' and D to minimize the

error € given by:
i (C + Dt; — b; )

(a) Write € in matrix form, just as for ordinary least squares in class (i.e. with a
matrix A of 1s and ¢; values and a vector b of b; values), but using the additional
diagonal “weighting” matrix W with W;; = 1/0; and W;; = 0 for i # j.

In matrix form

e = |[WAx — Wb,

where
1 tl ]./0'1 0 0
e I
1 t, 0 0 - 1/op.

(b) Derive a linear equation whose solution is the 2-component vector x (z; = C,
ro = D) minimizing e.

Solution | Now we are minimizing

|WAx — Wh||*.

This is just the ordinary least square problem with A replaced by WA, and b
replaced by Wb. So the linear equation whose solution minimizing € is

(WAT WAz = (WA Wb,

i.e.

ATW?2 Az = ATW?D.

(B ) 6)- (B8

More explicitly,



Problem 8: (20=4+4+2+5+75) For this problem, you will generate some random
data points from b = C' + Dt + noise for C' =1 and D = 0.5, and then try to use
least-square fitting to recover C' and D.

a) First, generate m random data points for m = 20 and ¢ € (0, 10):
=)

m = 20
rand(m,1) * 10
1 + 0.5%t + (rand(m,1)-0.5)

o' ct
nn

The last line generates the data points from C' 4+ Dt plus random numbers in
(—0.5,0.5). Plot them with:

plot(t, b, ’0’)

The codes

>> m=20;t=rand(m,1)*10,b=1+0.5*%t+(rand(m,1)-0.5) ,plot(t,b,’0’)
t =

.3874
.8156
.65652
.9520
.8687
.8976
.4559
.4631
.0936
.5469
.7603
.7970
.5510
.6261
.1900
.9836
.5974
.4039
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.8527
.2381

.4450
.6629
.8335
.1751
.3253
.9081
.2751
.8702
.1961
.5309
.7208
.1528
.5898
.5566
.0243
.3418
.4953
.4530
.0424
.0923
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Figure 1: t-b

(b) Now, do the least-square fit, as in class, by constructing the matrix A:
A =1[ ones(m, 1), t ]

and then solving AT Ax = A"b for x = (C; D):
x = (A" x A) \ (A’ xb)

(Refer to the 18.06 Matlab cheat-sheet if some of these commands confuse you.)
Plot the least-square fit, along with the “real” line 1 + ¢/2:

t0 = [0; 10]
plot(t, b, ’bo’, t0, x(1) + t0*x(2), ’r-’, t0, 1 + t0/2, ’k--’)

(The data points should be blue circles, the least-square fit a red line, and the “real”
line a black dashed line.)

Codes

>> A=[ones(m,1),t];x=(A>*xA)\(A’*Db) ,t0=[0;10];
plot(t,b,’bo’,t0,x(1)+t0*x(2),’r-’,t0,1+t0/2,’k--")

1.2264
0.4565
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Figure 2: least-square

(c) Verify that you get the same x by either of the two commands:

A\Db
pinv(A) * b

X
X

Codes

>> x=A\b

X=
1.2264
0.4565

>> x=pinv(A) *b
X =

1.2264
0.4565
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(d) Repeat the least-square fit process above (you can skip the plots) for increasing
numbers of data points: m = 40, 80, 160, 320, 640, 1280 (and more, if you want). For
each one, compute the squared error E in the least-square C' and D compared to
their “real” values in the formula that the data is generated from:

E=(x() - 12+ (x(2) - 0.5)"2

Plot this squared error versus m on a log-log scale using the command loglog in
Matlab (which works just like plot but with logarithmic axes). Overall, you should
find that the error decreases with m: with more data points, the noise in the data
averages out and the fit gets closer and closer to the underlying formula b = 1+1¢/2.
Note that if you want to create an array of E values, you can assign the elements
one by one via E(1) = ...; E(2) = ...; and so on. (Or you can write a loop, for
VI-3 hackers.)

Codes

>> m=40;t=rand(m, 1) *10;b=1+0.5%t+(rand(m,1)-0.5) ;A=[ones(m,1) ,t];
x=(A’*A)\ (A’ *b) ;E(1)=(x(1)-1)"2+(x(2)-0.5) "2

E =
0.0073

>> m=80;t=rand(m,1)*10;b=1+0.5*t+(rand(m,1)-0.5) ;A=[ones(m,1),t];
x=(A’*A)\(A’*b) ;E(2)=(x(1)-1)"2+(x(2)-0.5)"2

E =
0.0073 0.0019

>> m=160;t=rand(m,1)*10;b=1+0.5%t+(rand(m,1)-0.5) ;A=[ones(m,1) ,t];
x=(A’*A)\ (A’ *b) ;E(3)=(x(1)-1)"2+(x(2)-0.5) "2

E =
0.0073 0.0019 0.0018
>> m=320;t=rand(m,1)*10;b=1+0.5*t+(rand(m,1)-0.5) ;A=[ones(m,1),t];

x=(A’*A)\ (A’ *b) ;E(4)=(x(1)-1) "2+(x(2)-0.5) "2
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0.0073 0.0019 0.0018 0.0008

>> m=640;t=rand(m,1)*10;b=1+0.5*t+(rand(m,1)-0.5) ;A=[ones(m,1),t];
x=(A’*A)\ (A’ *b) ;E(5)=(x(1)-1)"2+(x(2)-0.5)"2

E =
0.0073 0.0019 0.0018 0.0008 0.0004

>> m=1280;t=rand(m,1)*10;b=1+0.5%t+(rand(m,1)-0.5) ;A=[ones(m,1) ,t];
x=(A’*A)\ (A’ *b) ;E(6)=(x(1)-1)"2+(x(2)-0.5) "2

E =
0.0073 0.0019 0.0018 0.0008 0.0004 0.0001

>> m(1)=40;m(2)=80;m(3)=160;m(4)=320;m(5)=640;m(6)=1280;1loglog(m,E, *bo’)

10°

107

10

107

‘
10 10° 10 10°*

Figure 3: m-E
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(e) Overall, E should depend on m as some power law: E = a * m® for some
constants « and [ (plus random noise, of course). Find « and by a least-square
fit of log F versus logm (since log E = log a+ Flogm is a straight line). (Show your
code!)

Codes

>> 1m(1)=log(m(1));1m(2)=log(m(2));1m(3)=log(m(3));1m(4)=1log(m(4));
1Im(5)=1log(m(5));1m(6)=log(m(6));

>> le(1)=log(E(1));1e(2)=log(E(2));1e(3)=1log(E(3));le(4)=1og(E(4));
1le(5)=1log(E(5));1e(6)=1og(E(6));

>> B=[ones(6,1),1m’];y=(B’*B)\(B’*le’)

y’:

-0.8137
-1.1346

Thus a = e 08137 = (0.4432, 3 = —1.1346.

(More accurate solution should go to about a=0.12, f=-1. Prof. Johnson tried it
for 10000 random m values log-distributed from 10 to 10000 — see the graph below.
The actual student answers will vary quite a bit because of random variations, of
course (for the suggested data set of only 6 data points, the standard deviation of
beta seems to be about 0.7).)
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error E in least-square fit parameters
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For problem 3(iv), we would ideally like to prove (V1) = V for “any” subspace
V' without assuming a finite-dimensional vector space. We need to show both V' C
(VH+ and (VHE C V:

e If v € V, then v is perpendicular to everything in V*, by definition, so v €
(V)

o If y € (V1)1 let v be the closest point! in V to y, i.e. v is the point in V
that minimizes ||y — v||*—we now must show that y = v. In class, we showed
y —v € V* for finite-dimensional spaces, using calculus; if we can show the
same thing in general we are done: y € (V)4 implies that y = (y — v) + v is
perpendicular to everything in V+, which implies that y—uv is perpendicular to
everything in V1 (since v is perpendicular to V+), which implies that y — v is
0 (the only element of V' that is also perpendicular to V1), and hence y = v.

e To show y — v € V*, consider any point v/ € V and any real number )
(assuming our vector space is over the reals). V is a subspace, so v+ A’ € V|
and v is the closest point in V to y, so |ly—v|* < |ly— (v+ \)||? = |ly—v|]*+
N|V'||* —2M\" - (y —v). Choose the sign of A so that A\v'- (y—v) = [\ - (y —v)].
Then, by simple algebra, |[v'- (y —v)| < %H’UIHQ, and if we let A — 0 we obtain
v (y—v) =0. QE.D.

A good source for more information on this sort of thing is Basic Classes of Linear
Operators by Gohberg, Goldberg, and Kaashoek (Birkhauser, 2003).

! This glosses over one tricky point: how do we know that there is a “closest” point to y in V,
i.e. that inf,cy ||y — v||? is actually attained for some v? To have this, we must require that V be
a closed subspace. In practice, unless you are very perverse, any subspace you are likely to work
with will be closed.
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