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1 Introduction

In 18.06, we mainly worry about matrices and column vectors: finite-dimensional lin-
ear algebra. But into the syllabus pops an odd topic: Fourier series. What do these
have to do with linear algebra? Where do their interesting properties, like orthogonal-
ity, come from?

In these notes, written to accompany 18.06 lectures in Fall 2007, we discuss these
mysteries: Fourier series come from taking concepts like eigenvalues and eigenvectors
and Hermitian matrices and applying them tofunctionsinstead of finitecolumn vectors.
In this way, we see that important properties like orthogonality of the Fourier series
arises not by accident, but as a special case of a much more general fact, analogous to
the fact that Hermitian matrices have orthogonal eigenvectors.

This material is important in at least two other ways. First, it shows you that the
things you learn in 18.06 are not limited to matrices—they are tremendously more
general than that. Second, in practice most large linear-algebra problems in science
and engineeringcome fromdifferential operators on functions, and the best way to
analyze these problems in many cases is to apply the same linear-algebra concepts to
the underlying function spaces.

2 Review: Finite-dimensional linear algebra

Most of 18.06 deals with finite-dimensional linear algebra. In particular, let’s focus on
the portion of the course having to do withsquarematrices and eigenproblems. There,
we have:

• Vectorsx: column vectors inRn (real) orCn (complex).

• Dot productsx ·y = xHy. These have the key properties:x ·x = ‖x‖2 > 0 for
x 6= 0; x · y = y · x; x · (αy + βz) = αx · y + βx · z.

• n×nmatricesA. The key fact is that we can multiplyA by a vector to get a new
vector, and matrix-vector multiplication islinear: A(αx + βy) = αAx + βAy.
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• TransposesAT and adjointsAH = AT . The key property here is thatx ·(Ay) =
(AHx) · y . . . the whole reason that adjoints show up is to move matrices from
one side to the other in dot products.

• Hermitian matricesA = AH , for whichx ·(Ay) = (Ax) ·y. Hermitian matrices
have three key consequences for their eigenvalues/vectors: the eigenvaluesλ are
real; the eigenvectors areorthogonal; 1 and the matrix isdiagonalizable(in fact,
the eigenvectors can be chosen in the form of anorthonormal basis).

Now, we wish to carry over these concepts to functions instead of column vectors,
and we will see that we arrive at Fourier series and many more remarkable things.

3 A vector space of functions

First, let us define a new vector space: the space offunctionsf(x) defined onx ∈ [0, 1],
with theboundary conditionsf(0) = f(1) = 0. For simplicity, we’ll restrict ourselves
to real f(x). We’ve seen similar vector spaces a few times, in class and on problem
sets.

This is clearly a vector space: if we add two such functions, or multiply by a
constant, we get another such function (with the same boundary conditions).

Of course, this is not the only vector space of functions one might be interested
in. One could look at functions on the whole real line, or two-dimensional functions
f(x, y), or even vector fields and crazier things. But this simple set of functions on
[0, 1] will be plenty for now!

4 A dot product of functions

To do really interesting stuff with this vector space, we will need to define thedot
product(inner product) f · g of two functionsf(x) andg(x).2

The dot product of two vectors is the sum of their components multiplied one by one
and added (possibly with complex conjugation if they are complex). The corresponding
thing for functions is to multiplyf(x)g(x) for eachx and “add them up”—integrateit:

f · g =
∫ 1

0

f(x)g(x)dx. (1)

For real functions, we can drop the complex conjugation of thef(x). Equation (1) is
easily seen to satisfy the key properties of dot products:f · g = g · f ; f · (αg+ βh) =
αf · g + βf · h; f · f = ‖f‖2 > 0 for f 6= 0.

1At least, the eigenvectors are orthogonal for distinct eigenvalues. In the case where one has multiple
independent eigenvectors of the same eigenvalueλ, i.e. the null-space ofA− λI is 2-or-more dimensional,
we can always orthogonalize them via Gram-Schmidt as we saw in class. So, it is fairer to say that the
eigenvectors can always bechosen orthogonal.

2The combination of a vector space and an inner product is called aHilbert space. (Plus a technical
condition calledcompleteness, but that’s only to deal with perverse functional analysts.)
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Actually, the last property is the most tricky: the quantity

f · f = ‖f‖2 =
∫ 1

0

|f(x)|2dx (2)

certainlyseemslike it must be positive forf(x) 6= 0. However, you can come up with
annoying functions where this is not true. For example, consider the functionf(x)
that= 0 everywhere except atx = 0.5, wheref(0.5) = 1. This f(x) is 6= 0, but its
‖f‖2 = 0 because the single point where it is nonzero has zero area. We can eliminate
most of these annoyances by restricting ourselves to continuous functions, for example,
although adding finite number of jump discontinuities is also okay. In general, though,
this raises an important point: whenever you are dealing with functions instead of col-
umn vectors, it is easy to come up with crazy functions that behave badly (their integral
doesn’t converge or doesn’t even exist, their‖f‖2 integral is zero, etcetera). Functional
analysts love to construct such pathological functions, and defining the precise minimal
criteria to exclude them is quite tricky in general, so we won’t try here. Let us colloqui-
ally follow the Google motto instead:don’t be evil; in physical problems, pathological
functions are rarely of interest. We will certainly exclude any functions where‖f‖2 is
not finite, or is zero for nonzerof(x).

Equation (1) is not the only possible way to define a function dot product, of course.
For example,

∫ 1

0
f(x)g(x)x dx is also a perfectly good dot product that follows the

same rules (and is important for problems in cylindrical coordinates). However, we
will stick with the simple eq. (1) definition here, merely keeping in mind the fact that
it was achoice, and the best choice may be problem-dependent.

5 Linear operators

A square matrixA corresponds to a linear operationy = Ax that, given a vectorx,
produces a new vectory in the same spaceCn. The analogue of this, for functions,
is some kind of operationAf(x) that, given a functionf(x), produces anew function
g(x). Moreover, we require this to be alinear operation: we must haveA[αf1(x) +
βf2(x)] = αAf1(x) + βAf2(x) for any constantsα andβ and functionsf1 andf2.

This is best understood by example. Perhaps the simplest linear operation on func-
tions is just the operationAf(x) = af(x) that multipliesf(x) by a real numbera. This
is clearly linear, and clearly produces another function! This is not a very interesting
operation, however.

A more interesting type of linear operation is one that involvesderivatives. For
example,Af(x) = df/dx = f ′(x). This is clearly a linear operation (the derivative
of a sum is the sum of the derivatives, etcetera). It produces a perfectly good new
functionf ′(x), as long as we don’t worry about non-differentiablef(x); again,don’t
be evil, and assume we have functions whereA is defined. Another example would
beBf(x) = A2f(x) = f ′′(x), the second-derivative operator. (Notice thatA2 just
means we performA, the derivative, twice.) Or we could add operators, for example
C = d2/dx2 + 3 d/dx+ 4 is anotherlinear differential operator.

Of course, if we can make a linear operator out of derivatives, you might guess that
we can make linear operators out of integrals too, and we certainly can! For example,
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Af(x) =
∫ x

0
f(x′)dx′. Notice that we putx in the integral limits (if we had used

∫ 1

0
,

thenAf would have been just a number, not a function). This is also linear by the
usual properties of integration. There are many other important integral operators, but
it leads into the subject ofintegral equations, which is a bit unfamiliar to most students,
and we won’t delve into it here.

6 Adjoints of operators

The adjointAH of a matrix is just the complex conjugate of the transpose, and the
transpose means that we swap rows and columns. But this definition doesn’t make
sense for linear operators on functions: what are the “rows and columns” ofd/dx, for
example? Instead, we recall that thekey propertyof the adjoint (and the transpose, for
real matrices) was how it interacts with dot products. In fact, handling matrices in dot
products is essentially the whole reason for doing adjoints/transposes. So, we use this
property as thedefinitionof the adjoint: the adjointAH is the linear operator such that,
for all f(x) andg(x) in the space,

f(x) · [Ag(x)] = [AHf(x)] · g(x). (3)

That is, the adjoint iswhatever we must do toA in order to move it from one side to the
other of the dot product. (It is easily verified that, for ordinary matrices, this definition
yields the ordinary conjugate-transposeAH .)

This is best understood by an example. Take the derivative operatord/dx. We
want to know what is its adjoint(d/dx)H? From the perspective of matrices, this may
seem like an odd question—the transpose of a derivative?? However, it is actually quite
natural: for functions, our dot product (1) is an integral, and to move a derivative from
one function to another inside an integral weintegrate by parts:

f(x) ·
[
d

dx
g(x)

]
=

∫ 1

0

f(x)g′(x)dx = f(x)g(x)|10 −
∫ 1

0

f ′(x)g(x)dx

= −
∫ 1

0

f ′(x)g(x)dx =
[
− d

dx
f(x)

]
· g(x). (4)

(We have dropped the complex conjugation, since we are dealing with real functions.)
Note that, in going from the first line to the second line, we used the boundary condi-
tions: f(0) = f(1) = g(0) = g(1) = 0, so the boundary term in integration by parts
disappeared. If we compare eq. (3) with the first and last expressions of eq. (4) we find
a wonderfully simple result: (

d

dx

)H

= − d

dx
. (5)

That is, to move the derivative from one side to the other inside this dot product, we
justflip the sign(due to integration by parts).

Before we go on, it is important to emphasize that eq. (5) is forthisdot product and
this function space. In general, the adjoint of an operator depends on all three things:
the operator, the dot product, and the function space.
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7 A Hermitian operator

Now that we have defined the adjointAH of an operatorA, we can immediately define
what we mean by aHermitian operatoron a function space:A is Hermitian ifA = AH ,
just as for matrices. Alternatively, based on the definition (3) of the adjoint, we can put
it another way too:A is Hermitian iff ·Ag = Af · g for all f andg in the space.

What is an example of a Hermitian operator? From eq. (5), thefirst derivative
certainly isnot Hermitian; in fact, it isanti-Hermitian. Instead, let us consider the
secondderivatived2/dx2. To move this from one side to the other in the dot product
(integral), we must integrate by partstwice:

f(x) ·
[
d2

dx2
g(x)

]
=

∫ 1

0

f(x)g′′(x)dx = f(x)g′(x)|10 −
∫ 1

0

f ′(x)g′(x)dx

= −
∫ 1

0

f ′(x)g(x)dx = − f ′(x)g(x)|10 +
∫ 1

0

f ′′(x)g(x)dx

=
∫ 1

0

f ′′(x)g(x)dx =
[
d2

dx2
f(x)

]
· g(x). (6)

Again, in going from the first line to the second, and in going from the second line to
the third, we have used the boundary condition that bothf(x) andg(x) are zero at the
boundaries, so e.g.f(x)g′(x)|10 = 0. Again, comparing the first expression to the last
expression in eq. (6), we have found:(

d2

dx2

)H

=
d2

dx2
, (7)

i.e. that thesecondderivative operatoris Hermitian!
There is another way to see the Hermitian property (7) of the second derivative by

realizing that, from eq. (5):

d2

dx2
=

d

dx

d

dx
= −

(
d

dx

)H
d

dx
. (8)

Whenever we haveA = −BHB for anyB, thenA is Hermitian!3

8 Eigenfunctions of a Hermitian operator

Now, let us consider the eigenfunctionsf(x) of the Hermitian second-derivative oper-
atorA = d2/dx2. These satisfyAf(x) = λf(x), i.e.

f ′′(x) = λf(x), (9)

3This derivation is perhaps a bit too glib, however, because when we take the derivative we aren’t really in
the same function space any more:f ′(x) doesnot satisfyf ′(0) = f ′(1) = 0 in general. A more advanced
course would be more careful in making sure that doing the derivative twice has the same Hermitian property,
because the boundary terms in the integration by parts may change.
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along with the boundary conditionf(0) = f(1) = 0.
What kind of function has a second derivative that is a constant multiple of itself?

Exponentialsecx would work, but they don’t satisfy the boundary conditions—they
are never zero! Orcos(cx) would work, but again it doesn’t satisfy the boundary
condition atx = 0. The only other alternative isf(x) = sin(cx), for whichf ′′(x) =
−c2 sin(cx). The sine function works:f(0) = 0 automatically, and we can make
f(1) = 0 by choosingc to benπ for a positive integern = 1, 2, 3, . . .. Thus, the
eigenfunctions and eigenvalues are (for an integern > 0):

fn(x) = sin(nπx) (10)

λn = −(nπ)2. (11)

Notice that the eigenvalues arereal, just as we would obtain for a Hermitian ma-
trix. And, just as for a Hermitian matrix, we can show that the eigenfunctions are
orthogonal: just doing a simple integral using a trigonometric identitysin a sin b =
[cos(a− b)− cos(a+ b)]/2, we obtain:∫ 1

0

sin(nπx) sin(mπx)dx

=
∫ 1

0

cos[(n−m)πx]− cos[(n+m)πx]
2

dx

=
(

sin[(n−m)πx]
2(n−m)π

− sin[(n+m)πx]
2(n+m)π

)∣∣∣∣1
0

= 0 (12)

for n 6= m.
This orthogonality relationship, and the fact that the eigenvalues are real, didn’t

fall out of the sky, however—we didn’t actually need to do the integral to check that
it would be true. It follows fromexactlythe same proof that we applied to the case
of Hermitian matrices—the proof only used the interaction with the adjoint and the
dot product, and never referred directly to the matrix entries or anything like that. As
a review, let’s just repeat the proofs here, except that we’ll usefn(x) instead ofx.
Suppose we have eigenfunctionsfn(x) satisfyingAfn = λfn. To show thatλ is real,
we took the dot product of both sides of the eigenequation withfn:

fn ·Afn = fn · (λnfn) = λn(fn · fn) = λn‖fn‖2

= (AHfn) · fn = (Afn) · fn = (λnfn) · fn = λn‖fn‖2,
(13)

and thus(λ− λ̄n)‖fn‖2 = 0, which is only possible ifλn = λ̄n: λn is real!
The key point here is that wedidn’t need to do the integralin eq. (12)—the eigen-

functions wereautomatically orthogonaldue to the Hermitian property ofd2/dx2.
This is extremely useful, because most differential operators aren’t so nice as the sec-
ond derivative, and we usually don’t know an analytic formula for the eigenfunctions
(much less how to integrate them). Even for the sines, it is beautiful to see how the or-
thogonality is not just an “accident” of some trigonometric identities: it comes because
sines are eigenfunctions of the second derivative, which is Hermitian.

6



9 The Fourier sine series

For Hermitian matrices, an important property is that a Hermitian matrix is always
diagonalizable: the eigenvectors always form a basis of the vector space. As was first
suggested by Joseph Fourier in 1822, the same holds true for the functionssin(nπx),
which are eigenfunctions of the Hermitian operatord2/dx2. That is, “any” function
f(x) can be written as a sum of these eigenfunctions multiplied by some coefficients
bn:

f(x) =
∞∑

n=1

bn sin(nπx). (14)

This is now known as aFourier sine seriesfor f(x).
The precise meaning of “any” function and of the “=” in eq. (14) generated a cen-

tury and a half of controversy, but when the dust had settled it turned out that Fourier
was essentially right: the series in eq. (14) converges almost everywhere tof(x) [ex-
cept at isolated points of discontinuity, which we usually don’t care about], as long as∫
|f(x)|p exists (doesn’t blow up, etc.) for somep > 1. The fascinating issue of the

convergence of this sine series is discussed further with some numerical examples in
another 18.06 handout on the web site.

Not worrying about convergence, let’s consider the question of how to find the co-
efficientsbn. For matrices, if we have a basis of eigenfunctions forming the columns
of a matrixS, we can write any vectorx in this basis asx = Sb, solving for the
coefficientsb = S−1x. Solving for the coefficients is hard in general because it re-
quires us to solve a linear equation, but in the special case of a Hermitian matrix then
the eigenvectors can be chosen to be orthonormal, and henceS = Q (Q unitary) and
b = Q−1x = QHx. That is, each componentbm is just bm = qm · x: we get the
coefficients by taking dot products ofx with the orthonormal eigenvectors. We can
do exactlythe same thing with the Fourier series, because the eigenvectors are again
orthogonal.

That is, take the dot product of both sides of eq. (14) withsin(mπx):

f(x) · sin(mπx) =
∞∑

n=1

bn sin(nπx) · sin(mπx)

= bm‖ sin(mπx)‖2 = bm/2.

(15)

To go from the first line to the second, we used the orthogonality relationship:sin(nπx)·
sin(mπx) is zerounlessm = n, so all but themth term of the sum disappears. The
final factor of1/2 is from the fact that

∫ 1

0
sin2(mπx) = 1/2. Thus, we have arrived at

one of the remarkable formulas of mathematics:

bn = 2
∫ 1

0

f(x) sin(nπx)dx, (16)

which gives the coefficients of the Fourier sine series via a simple integral.
The key point is that this result is not limited to sine functions or tod2/dx2. It was

a consequence of the fact thatd2/dx2 is a Hermitian operator that allowed us to expand
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any function in terms of the eigenfunctions (sines) and to get the coefficients via the
orthogonality relationship. There are many, many other Hermitian operators that arise
in a variety of problems, for which similar properties hold.4

10 The Fourier cosine series

The reason that we got sine functions was the boundary conditionsf(0) = f(1) = 0
on our function space. To get cosine functions instead, we merely have to change the
boundary conditions to zeroslopeinstead of zerovalueat the boundaries: that is, we
requiref ′(0) = f ′(1) = 0.

Then, if we look for eigenfunctions of the second derivative, i.e.f ′′(x) = λf(x)
with zero-slope boundaries, we are led to

fn(x) = cos(nπx) (17)

λn = −(nπ)2. (18)

Now, however, we must allown = 0, since that gives a perfectly good non-zero eigen-
functionf0(x) = 1.

The eigenvalues are real, but are the eigenfunctions still orthogonal? We could
check this by explicit integration as in eq. (12), but it is simpler and nicer just to check
thatd2/dx2 is still Hermitian. If we look at the integration by parts in eq. (6), it still
works: the boundary terms look likef(x)g′(x) andf ′(x)g(x), so they still are zero.
So, we get orthogonality for free!

Again, we can expand “any” reasonable function in terms of the cosine eigenfunc-
tions multiplied by some coefficientsan, yielding theFourier cosine series:

f(x) =
a0

2
+

∞∑
n=1

an cos(nπx) (19)

an = 2
∫ 1

0

f(x) cos(nπx)dx. (20)

Again, we got eq. (20) by taking the dot product of both sides of eq. (19) withcos(mπx),
which kills all of the terms in the series except forn = m, thanks to orthogonality. The
a0 term looks a bit funny: the extra factor of1/2 is there simply because‖ cos(nπx)‖2

is 1/2 for n 6= 0 but is1 for n = 0. By including the1/2 in the series definition (19),
we can use the same formula (20) for all the terms, includingn = 0.

4Technically, the ability of the eigenfunctions to form a “basis” for the space, i.e. to be able to expand
“any” function in terms of them, is unfortunately not automatic for Hermitian operators, unlike for Hermitian
matrices where it is always true. A Hermitian operator on functions has to satisfy some additional properties
for this property, thespectral theorem, to hold. However, the Hermitian operators that arise from physical
problems almost always have these properties, so much so that many physicists and engineers aren’t even
aware of the counter-examples.

8



11 The Fourier series

The nameFourier seriesby itself is usually reserved for an expansion off(x) in terms
of bothsine and cosine. How do we get this? Zero boundaries gave sines, and zero-
slope boundaries gave cosines; what condition doesbothsine and cosine satisfy? The
answer isperiodicboundaries. To keep the same formulas as above, it is convenient to
look at functionsf(x) onx ∈ [−1, 1], with the dot productf ·g =

∫ 1

−1
f(x)g(x)dx. We

then require our functionsf(x) to beperiodic: f(−1) = f(1) andf ′(−1) = f ′(1)..
The periodic eigenfunctions arebothsin(nπx) andcos(nπx) (i.e. two independent

functions with the same eigenvalue−n2π2). We already know thatsin is orthogonal to
sin andcos to cos, andsin is orthogonal tocos because the integral of an odd function
multiplied by an even function is zero. Our operatord2/dx2 is still Hermitian: in the
integration by parts [eq. (6)], we get boundary terms likef(x)g′(x)|1−1, which are zero
because the periodicity means thatf(−1)g′(−1) = f(1)g′(1).

Finally, we can write out “any” function onx ∈ [−1, 1] as a sum of sines and
cosines, and get the coefficients by orthogonality as above. However, we will mainly
focus on the sine and cosine series, for simplicity.

12 A positive-definite operator

Let’s go back to our original space of functionsf(x) for x ∈ [0, 1] with f(0) = f(1) =
0. Instead ofd2/dx2, let’s look at−d2/dx2. Since we just multiplied by−1, this
doesn’t change the Hermitian property or the eigenfunctions, and the eigenvalues just
flip sign. That is, the eigenfunctions are stillsin(nπx) for n > 0, and the eigenvalues
are now+(nπ)2. Notice that the eigenvalues are allpositive. In analogy with matrices,
we can say that the operator−d2/dx2 must bepositive definite.

However, it is unsatisfying to have to actually find the eigenvalues in order to check
that the operator is positive definite. Solving for the eigenvalues may be hard, or even
impossible without a computer, if we have a more complicated operator. We want a
way to tell that the eigenvalues are positive just by looking at the operator, in the same
way that we could tell that the eigenvalues were real just by integrating the operator by
parts (to check that it is Hermitian). Fortunately, this is quite possible!

To check that an operatorA is positive definite, we just need to check thatf ·Af > 0
for all f(x) 6= 0. Typically, we can do this just by integrating by parts, and that works
here as well:

f ·
[
− d2

dx2
f

]
= −

∫ 1

0

f(x)f ′′(x)dx = −f(x)f ′(x)|10 +
∫ 1

0

[f ′(x)]2 dx

=
∫ 1

0

[f ′(x)]2 dx ≥ 0.

(21)

So, we can see that the operator−d2/dx2 is at least positive semidefinite. For it to be
positive definite, we need to make sure that eq. (21) is never zero for a non-zerof(x).
The only way for eq. (21) to equal zero is iff ′(x) = 0, which means thatf(x) is a
constant. But, with the boundary conditionf(0) = f(1) = 0, the only constantf(x)
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can be is zero. So, eq. (21) is always> 0 for f(x) 6= 0, and−d2/dx2 is positive-
definite.

There is another way to see the same thing. From eq. (8), we saw thatA =
−d2/dx2 = BHB, for B = d/dx. Any operator or matrix of the formBHB is
automatically positive semidefinite (as we saw in class), and is positive-definite ifB
has full column rank (i.e., ifB has no non-zero nullspace). Here,Bf = f ′(x) = 0
only for f(x) = 0, due to the boundary conditions, by the same reasoning as above, so
A is positive definite.

The ability to do this kind of analysis is tremendously important, because it allows
us to say a lot about the eigenvalues of differential operators, even sometimes very
complicated operators, without having to solve a horrible differential equation.

13 Fourier (sine) series applications

With diagonalizable matricesA, once we knew the eigenvaluesλ and eigenvectors we
could do all sorts of marvelous things: we could invert the matrix just by inverting
the eigenvalues (if they are nonzero), we could take exponentials just by takingeλ, we
could compute powersAn viaλn (even square roots of matrices), and so on. The basic
strategy was always the same: write an arbitrary vector in the basis of the eigenvectors,
and thenA acting on each eigenvector acts just like a simple numberλ. This is the
whole point of eigenvectors: they turn horrible things like matrices into simple num-
bers. Things work in exactly the same way with differential operators! Below are a
couple of nice examples.

13.1 The diffusion equation

If we have a system of linear differential equationsdx/dt = Ax with an initial con-
dition x(0), we saw in class that the solution was justx(t) = eAtx(0). The matrix
exponential at first seemed rather strange, but in terms of the eigenvectors it is simple:
we first writex(0) in the basis of eigenvectors, then multiply each eigenvector byeλt.

Now, let’s look at the analogous problem of adiffusion equation:

∂

∂t
f(x, t) =

∂2

∂x2
f(x, t), (22)

where the initial conditionf(x, 0) is given, and at each timet we havef(0, t) =
f(1, t) = 0 (the same boundary conditions as for the sine series, hint hint). This
equation is used to describe diffusion, e.g.f could be the concentration of salt in a
solution of water; if you start out with a high concentration of salt in one region at
t = 0, it should diffuse to other regions over time. Or, it could also describe heat
conduction, wheref might be a temperature difference.

In any case, eq. (22), if we squint at it, is in the same form asdx/dt = Ax, with
x replaced by the functionf and the matrixA replaced by the operator∂2/∂x2. Thus,
by analogy, we should be able to immediately write down the “solution”

f(x, t) = et ∂
∂x2 f(x, 0). (23)
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But wait a minute, what is the exponential of a second derivative? What does this even
mean? We could definite it by a power series expansion, just as for matrices, but it is
much more useful to think about what it does to eigenfunctions:

et ∂
∂x2 sin(nπx) = e−(nπ)2t sin(nπx). (24)

That is, we may not know what the exponential of a second derivative is in general, but
we surely know what it does to an eigenfunction: For an eigenfunctionsin(nπx), the
second derivative∂2/∂x2 must act just like anumber, the eigenvalue−(nπ)2.

Now that we know what the solution is for the eigenfunctions, however, we are
done! We just expand the initial conditionf(x, 0) via the sine series, multiply each
sin(nπx) by exp(−(nπ)2t), and voila, we have the solution:

f(x, t) =
∞∑

n=1

bne
−(nπ)2t sin(nπx), (25)

wherebn = 2
∫ 1

0
f(x, 0) sin(nπx) as in eq. (16).

Of course, even if we can compute thebn coefficients analytically [iff(x, 0) is
simple enough to integrate], we probably can’t add up the series (25) by hand. But it is
no problem to add up 100 or 1000 terms of the series on a computer, to get the solution
as a function of time.

Also, we have learned quite a bit just by writing down the series solution eq. (25).
First, notice that all of the terms go exponentially to zero:f(x,∞) = 0 (with these
boundary conditions, everything “diffuses away” out of the boundaries). Second, no-
tice that the large-n terms decay faster than the smaller-n terms: in diffusion problems,
fast oscillations (largen) quickly smooth out, and eventually we are dominated by the
n = 1 termsin(πx).

13.2 Poisson’s equation

With matrices, solvingAx = b for x is fairly hard, it requires us to do elimination
or something similar (∼ n3 work). However, ifA is diagonalizable and we know the
eigenvectors, it is no problem: we just expandb in the eigenvectors, multiply each by
1/λ, and we are done.5

Now, let’s look at an analogous problem for a linear operator,Poisson’s equation:

d2

dx2
f(x) = g(x), (26)

in which we are giveng(x) and want to findf(x) such thatf(0) = f(1) = 0. Again,
this is “just” solving a linear equation, except that we have functions instead of vectors.
Again, if we had eigenfunctions, we would know what to do: the solution to

d2

dx2
f(x) = sin(nπx), (27)

5If A is not invertible, then we requireb to be in the column space, which means that it must be in the
span of theλ 6= 0 eigenvectors. And if we have a solution, it is not unique: we can add anything in the
nullspace, which is the span of theλ = 0 eigenvectors. So, the eigenvectors still tell us everything even in
the non-invertible case.
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is clearly justf(x) = sin(nπx)/[−(nπ)2]. That is, for eigenfunctions, we just take
1/λ as usual to solve the problem. And now we know what to do for an arbitraryg(x):
we expand it in a sine series, and divide each term by the eigenvalue. That is, the
general solution is

f(x, t) =
∞∑

n=1

bn
−(nπ)

sin(nπx), (28)

wherebn = 2
∫ 1

0
g(x) sin(nπx) as in eq. (16).

In this case, the operatord2/dx2 is invertible because all the eigenvalues are non-
zero. In the next problem set, you will think a little about the case off ′(0) = f ′(1) = 0
boundary conditions, where one obtains a cosine series and there is a zero eigenvalue.

14 More examples of Hermitian operators

In class, we focused on the case of the operatord2/dx2, which has the virtue that its
eigenfunctions can be found analytically, and so we can see properties like orthogonal-
ity and real eigenvalues explicitly. However, the real power of looking at differential
operators in this way comes for problems that youcannotsolve analytically (or where
the solutions are very difficult). You can learn so much just by integrating by parts a
couple of times, which is a lot easier than solving a partial differential equation. In this
section, we’ll give a few example of other operators that can be analyzed in this way.

In homework, you’ll look at the operatorAf = − d
dx [w(x)df/dx] for some func-

tionw(x) > 0, which is also straightforwardly shown to be Hermitian positive-definite.
This operator arises in many problems; for example, it appears when studying electro-
magnetic waves going through different materials, wheref is the magnetic field and
1/w(x) is the square of the refractive index.

In quantum mechanics, one studies eigenproblems of the form (in one dimension)[
− d

dx

2

+ V (x)
]
ψ(x) = Eψ(x), (29)

where the eigenfunctionψ is a quantum probability amplitude, the eigenvalueE is the
energy, andV (x) is some potential energy function. This is clearly Hermitian, since it
is the sum of two Hermitian operators:−d2/dx2, andV (x) (which just multiplies the
function by a real number at each point, and is trivially Hermitian). So, we immediately
obtain the result that the energyE is real, which is good! (What would a complex
energy mean?) And the eigenfunctionsψ(x) are orthogonal, which turns out to have
important physical consequences for the probabilities. And we learn all of this without
solving it, which might be quite difficult depending onV (x) is. One famous case is
whereV (x) = x2, in which case the eigenfunctions are calledHermite functionsand
are important in many fields of science and mathematics.

Another important differential operator is:

Af(x) =
[
− d2

dx2
− 1
x

d

dx
+ α2

]
f(x) (30)
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for functions withf(0) = f(1) = 0 and some constantα. This operatorA is Hermitian
positive-definite under the inner productf · g =

∫ 1

0
f(x)g(x)xdx, which arises in

cylindrical coordinates (thinkx = r). The eigenfunctions are famous functions known
asBessel functions, but even if you don’t know what these are you now know that they
are orthogonal under this inner product, and that their eigenvalues are positive.

The preceding examples were for one-variable functionsf(x). Of course, there
are lots of interesting problems in two and three spatial dimensions, too! We’ll just
give one example here. Suppose you have a drum (the musical instrument), and the
drum head is some shape. Letf(x, y) be the height of the drum head at each point
(x, y), with f(x, y) = 0 at the boundaries of the drum head. One interesting problem
is to find thestanding-wavemodes, which are solutionsf(x, y) sin(ωt) that oscillate
at some fixed frequencyω. The standing-wave solutions satisfy the equation:[

− ∂2

∂x2
− ∂2

∂y2

]
f(x, y) = ω2f(x, y). (31)

Again, the linear operator on the left-hand side is Hermitian positive-definite with the
inner productf · g =

∫∫
f(x, y)g(x, y)dxdy. The proof is almost exactly the same as

for−d2/dx2 in one dimension: we just integrate by parts inx for the∂2/∂x2 term, and
in y for the∂2/∂y2 term. This tells us thatω is real, which is good because it means
that the solutions are oscillating instead of exponentially decaying or growing (as they
would for complexω). Solving for the eigenfunctionsf(x, y) explicitly, however, is
quite hard in general (unless the drum head has a special shape, like square or circular).
However, we do know that the eigenfunctions are orthogonal and form a basis for
arbitrary functionsf(x, y). If you hit the drum, the frequencies that you hear are
determined by taking the function that you hit the drum with (i.e., where you press
down) and expanding it in the eigenfunctions. Hitting it at different points excites
different eigenfunctions with different coefficients, and produces different tones.
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