Notes on function spaces, Hermitian operators,
and Fourier series

S. G. Johnson, MIT Applied Mathematics
November 21, 2007

1 Introduction

In 18.06, we mainly worry about matrices and column vectors: finite-dimensional lin-
ear algebra. But into the syllabus pops an odd topic: Fourier series. What do these
have to do with linear algebra? Where do their interesting properties, like orthogonal-
ity, come from?

In these notes, written to accompany 18.06 lectures in Fall 2007, we discuss these
mysteries: Fourier series come from taking concepts like eigenvalues and eigenvectors
and Hermitian matrices and applying thenfuactionsinstead of finitecolumn vectors
In this way, we see that important properties like orthogonality of the Fourier series
arises not by accident, but as a special case of a much more general fact, analogous to
the fact that Hermitian matrices have orthogonal eigenvectors.

This material is important in at least two other ways. First, it shows you that the
things you learn in 18.06 are not limited to matrices—they are tremendously more
general than that. Second, in practice most large linear-algebra problems in science
and engineeringome fromdifferential operators on functions, and the best way to
analyze these problems in many cases is to apply the same linear-algebra concepts to
the underlying function spaces.

2 Review: Finite-dimensional linear algebra

Most of 18.06 deals with finite-dimensional linear algebra. In particular, let’s focus on
the portion of the course having to do wihuarematrices and eigenproblems. There,
we have:

e Vectorsx: column vectors irR™ (real) orC™ (complex).

e Dot productsx -y = xy. These have the key properties: x = ||x||?> > 0 for
xZ20x y=y x;x - (ay+0z) =ax-y + 0x -z

e n xn matricesA. The key fact is that we can multiplt by a vector to get a new
vector, and matrix-vector multiplication imear: A(ax + fy) = aAx + fAy.



e Transposesi” and adjointsd” = AT. The key property here is that (Ay) =
(Afx) .y ...the whole reason that adjoints show up is to move matrices from
one side to the other in dot products.

e Hermitian matricest = A%, for whichx - (Ay) = (Ax)-y. Hermitian matrices
have three key consequences for their eigenvalues/vectors: the eigerivatees
real; the eigenvectors amrthogonaj * and the matrix isliagonalizablg(in fact,
the eigenvectors can be chosen in the form obdhonormal basig

Now, we wish to carry over these concepts to functions instead of column vectors,
and we will see that we arrive at Fourier series and many more remarkable things.

3 A vector space of functions

First, let us define a new vector space: the spadensftionsf (x) defined one € [0, 1],

with theboundary conditiong (0) = f(1) = 0. For simplicity, we'll restrict ourselves
toreal f(z). We've seen similar vector spaces a few times, in class and on problem
sets.

This is clearly a vector space: if we add two such functions, or multiply by a
constant, we get another such function (with the same boundary conditions).

Of course, this is not the only vector space of functions one might be interested
in. One could look at functions on the whole real line, or two-dimensional functions
f(z,y), or even vector fields and crazier things. But this simple set of functions on
[0, 1] will be plenty for now!

4 A dot product of functions

To do really interesting stuff with this vector space, we will need to definedtite
product(inner produc} f - g of two functionsf(x) andg(x).2

The dot product of two vectors is the sum of their components multiplied one by one
and added (possibly with complex conjugation if they are complex). The corresponding
thing for functions is to multiplyf (x)g(x) for eachz and “add them up”—ntegrateit:

frg= /0 F@)g()dz. 1)

For real functions, we can drop the complex conjugation offthe. Equation (1) is
easily seen to satisfy the key properties of dot produttsi = g - f; f - (g + Bh) =
af -g+6f-h; f-f=|f|>>0for f#o0.

1At least, the eigenvectors are orthogonal for distinct eigenvalues. In the case where one has multiple
independent eigenvectors of the same eigenvajue. the null-space afl — A\ is 2-or-more dimensional,
we can always orthogonalize them via Gram-Schmidt as we saw in class. So, it is fairer to say that the
eigenvectors can always blosen orthogonal

2The combination of a vector space and an inner product is callditbart space (Plus a technical
condition calleccompletenesdut that's only to deal with perverse functional analysts.)




Actually, the last property is the most tricky: the quantity

1
Fof =P = / f (@) Pdx @

certainlyseemdike it must be positive forf (z) # 0. However, you can come up with
annoying functions where this is not true. For example, consider the fungtion

that= 0 everywhere except at = 0.5, wheref(0.5) = 1. This f(x) is # 0, but its

| fII? = 0 because the single point where it is nonzero has zero area. We can eliminate
most of these annoyances by restricting ourselves to continuous functions, for example,
although adding finite number of jump discontinuities is also okay. In general, though,
this raises an important point: whenever you are dealing with functions instead of col-
umn vectors, it is easy to come up with crazy functions that behave badly (their integral
doesn't converge or doesn’t even exist, thifi? integral is zero, etcetera). Functional
analysts love to construct such pathological functions, and defining the precise minimal
criteria to exclude them is quite tricky in general, so we won't try here. Let us colloqui-
ally follow the Google motto insteadton’t be evi in physical problems, pathological
functions are rarely of interest. We will certainly exclude any functions whg{é is

not finite, or is zero for nonzerf(x).

Equation (1) is not the only possible way to define a function dot product, of course.
For example,fo1 f(x)g(x)x dx is also a perfectly good dot product that follows the
same rules (and is important for problems in cylindrical coordinates). However, we
will stick with the simple eq. (1) definition here, merely keeping in mind the fact that
it was achoice and the best choice may be problem-dependent.

5 Linear operators

A square matrix4 corresponds to a linear operatign= Ax that, given a vectoxk,
produces a new vectgr in the same spac€™. The analogue of this, for functions,
is some kind of operatiod f(z) that, given a functiorf(x), produces aew function
g(x). Moreover, we require this to belimear operation: we must havé|a fi(x) +
Bfa(x)] = aAfi(x) + BAf2(x) for any constants andg and functionsf; and f.

This is best understood by example. Perhaps the simplest linear operation on func-
tions is just the operatioA f (z) = af(x) that multipliesf («) by a real numbed. This
is clearly linear, and clearly produces another function! This is not a very interesting
operation, however.

A more interesting type of linear operation is one that involdesvatives For
example, Af(z) = df /dx = f'(x). This is clearly a linear operation (the derivative
of a sum is the sum of the derivatives, etcetera). It produces a perfectly good new
function f’(x), as long as we don’t worry about non-differentialfle:); again,don’t
be evi| and assume we have functions wherés defined. Another example would
be Bf(z) = A%f(x) = f"(x), the second-derivative operator. (Notice kgt just
means we perform, the derivative, twice.) Or we could add operators, for example
C = d?/dz? + 3d/dz + 4 is anothellinear differential operator

Of course, if we can make a linear operator out of derivatives, you might guess that
we can make linear operators out of integrals too, and we certainly can! For example,



Af(z) = [; f(2)da’. Notice that we put in the integral limits (if we had useﬁol,

then Af would have been just a number, not a function). This is also linear by the
usual properties of integration. There are many other important integral operators, but
it leads into the subject aftegral equationswhich is a bit unfamiliar to most students,

and we won't delve into it here.

6 Adjoints of operators

The adjointA” of a matrix is just the complex conjugate of the transpose, and the
transpose means that we swap rows and columns. But this definition doesn’'t make
sense for linear operators on functions: what are the “rows and columugdof for
example? Instead, we recall that theyy propertyof the adjoint (and the transpose, for

real matrices) was how it interacts with dot products. In fact, handling matrices in dot
products is essentially the whole reason for doing adjoints/transposes. So, we use this
property as thelefinitionof the adjoint: the adjoini” is the linear operator such that,

for all f(x)andg(z) in the space,

f(z) - [Ag()] = [AT f(2)] - g(a). 3)

That is, the adjoint isvhatever we must do té in order to move it from one side to the
other of the dot product(lt is easily verified that, for ordinary matrices, this definition
yields the ordinary conjugate-transpo4€ .)

This is best understood by an example. Take the derivative opetaiar We
want to know what is its adjoirttd/dxz)*? From the perspective of matrices, this may
seem like an odd question—the transpose of a derivative?? However, it is actually quite
natural: for functions, our dot product (1) is an integral, and to move a derivative from
one function to another inside an integral integrate by parts

1) [ow)] = [ 1@ wias = s@ait - [ s

= —/01 ' (2)g(x)dx = {—jgjf@)} ~g(z). (4)

(We have dropped the complex conjugation, since we are dealing with real functions.)
Note that, in going from the first line to the second line, we used the boundary condi-
tions: f(0) = f(1) = ¢g(0) = g(1) = 0, so the boundary term in integration by parts

disappeared. If we compare eq. (3) with the first and last expressions of eq. (4) we find

a wonderfully simple result:
H
24) =-% ®
dx dx

That is, to move the derivative from one side to the other inside this dot product, we
justflip the sign(due to integration by parts).

Before we go on, it is important to emphasize that eq. (5) ishisrdot product and
this function space. In general, the adjoint of an operator depends on all three things:
the operator, the dot product, and the function space.



7 A Hermitian operator

Now that we have defined the adjoiaf’ of an operatord, we can immediately define
what we mean by Bermitian operatoon a function spaced is Hermitian if A = A¥

just as for matrices. Alternatively, based on the definition (3) of the adjoint, we can put
it another way tooA is Hermitian if f - Ag = Af - g for all f andg in the space.

What is an example of a Hermitian operator? From eq. (5)fitsederivative
certainly isnot Hermitian; in fact, it isanti-Hermitian. Instead, let us consider the
secondderivatived? /dz?. To move this from one side to the other in the dot product
(integral), we must integrate by pattsice

@) | g9 = [ 0" @rte = @@l - [ 7@ @)
- | f@y@ide =~ f@g@lh+ [ Fiagad
0 0
! " o d?
~ [ @t = | 15 1@] g0, @

Again, in going from the first line to the second, and in going from the second line to
the third, we have used the boundary condition that i) andg(x) are zero at the
boundaries, so e.gf(z)g'(x)|§ = 0. Again, comparing the first expression to the last
expression in eq. (6), we have found:

2N\T a2
(da:> = @
i.e. that thesecondderivative operatois Hermitian!

There is another way to see the Hermitian property (7) of the second derivative by
realizing that, from eq. (5):

2 H
@ _dd_ (a\"a ©
dz?  dz dx dx dx

Whenever we havel = — B B for any B, then A is Hermitian?

8 Eigenfunctions of a Hermitian operator

Now, let us consider the eigenfunctiofigz) of the Hermitian second-derivative oper-
ator A = d?/dx?. These satisfyl f(x) = \f(z), i.e.

f'(@) = Af(2), (9)

3This derivation is perhaps a bit too glib, however, because when we take the derivative we aren‘t really in
the same function space any moyé(x) doesnotsatisfy f(0) = f/(1) = 0in general. A more advanced
course would be more careful in making sure that doing the derivative twice has the same Hermitian property,
because the boundary terms in the integration by parts may change.




along with the boundary conditiof(0) = f(1) = 0.

What kind of function has a second derivative that is a constant multiple of itself?
Exponentialse® would work, but they don't satisfy the boundary conditions—they
are never zero! Otos(cx) would work, but again it doesn't satisfy the boundary
condition atz = 0. The only other alternative i§(x) = sin(cz), for which f”(z) =
—c?sin(cx). The sine function works:;f(0) = 0 automatically, and we can make
f(1) = 0 by choosingc to benr for a positive integer. = 1,2,3,.... Thus, the
eigenfunctions and eigenvalues are (for an integer 0):

fn(x) = sin(nmzx) (10)
\p = —(nm)2. (12)

Notice that the eigenvalues areal, just as we would obtain for a Hermitian ma-
trix. And, just as for a Hermitian matrix, we can show that the eigenfunctions are
orthogonal just doing a simple integral using a trigonometric identity a sinb =
[cos(a — b) — cos(a + b)]/2, we obtain:

1
/ sin(nmx) sin(mmzx)dx
0

B b cos|(n — m)mwz] — cos|(n + m)mrx] .
_ /0 5 d
sin[(n —m)mz]  sin[(n +m)ma] ' —
N ( 2(n —m)m 2(n+m) ) 0_0 (2

forn # m.

This orthogonality relationship, and the fact that the eigenvalues are real, didn't
fall out of the sky, however—we didn't actually need to do the integral to check that
it would be true. It follows fromexactlythe same proof that we applied to the case
of Hermitian matrices—the proof only used the interaction with the adjoint and the
dot product, and never referred directly to the matrix entries or anything like that. As
a review, let’s just repeat the proofs here, except that we'll fige) instead ofx.
Suppose we have eigenfunctiofig «) satisfyingAf, = Af,,. To show that\ is real,
we took the dot product of both sides of the eigenequation yyjth

I Afn=fn- (/\nfn) = )‘n(fn : fn) = )‘n||fn||2
= (Aan) “fn = (Afn) “fn = ()‘nfn) “fn = EanHQ»

and thug A — \,,) || £.||? = 0, which is only possible if\,, = \,: A, is real!

The key point here is that wdidn't need to do the integrah eq. (12)—the eigen-
functions wereautomatically orthogonatiue to the Hermitian property af?/dz2.
This is extremely useful, because most differential operators aren’t so nice as the sec-
ond derivative, and we usually don’'t know an analytic formula for the eigenfunctions
(much less how to integrate them). Even for the sines, it is beautiful to see how the or-
thogonality is not just an “accident” of some trigonometric identities: it comes because
sines are eigenfunctions of the second derivative, which is Hermitian.

(13)



9 The Fourier sine series

For Hermitian matrices, an important property is that a Hermitian matrix is always
diagonalizable: the eigenvectors always form a basis of the vector space. As was first
suggested by Joseph Fourier in 1822, the same holds true for the furktionsz),

which are eigenfunctions of the Hermitian operaféyd=2. That is, “any” function

f(z) can be written as a sum of these eigenfunctions multiplied by some coefficients
bp:

f(z) = i by, sin(nmz). (14)
n=1

This is now known as &ourier sine seriesor f(z).

The precise meaning of “any” function and of the “=" in eq. (14) generated a cen-
tury and a half of controversy, but when the dust had settled it turned out that Fourier
was essentially right: the series in eq. (14) converges almost everywhgéte)tfex-
cept at isolated points of discontinuity, which we usually don't care about], as long as
[ |f(x)|P exists (doesn't blow up, etc.) for sompe> 1. The fascinating issue of the
convergence of this sine series is discussed further with some numerical examples in
another 18.06 handout on the web site.

Not worrying about convergence, let's consider the question of how to find the co-
efficientsb,,. For matrices, if we have a basis of eigenfunctions forming the columns
of a matrix.S, we can write any vectok in this basis ax = Sb, solving for the
coefficientsb = S~!x. Solving for the coefficients is hard in general because it re-
quires us to solve a linear equation, but in the special case of a Hermitian matrix then
the eigenvectors can be chosen to be orthonormal, and ltercé) (Q unitary) and
b = Q 'x = Qfx. That is, each componehy, is justb,, = q., - x: we get the
coefficients by taking dot products af with the orthonormal eigenvectors. We can
do exactlythe same thing with the Fourier series, because the eigenvectors are again
orthogonal.

That is, take the dot product of both sides of eq. (14) wittfmmrz):

f(z) - sin(mmx) = Z by, sin(nmz) - sin(mmx)

(15)
1 = by /2.

= by, || sin(mmz)

To go from the first line to the second, we used the orthogonality relationshipirz)-
sin(mmz) is zerounlessm = n, so all but thenth term of the sum disappears. The
final factor of1/2 is from the fact thay"o1 sin?(mmx) = 1/2. Thus, we have arrived at
one of the remarkable formulas of mathematics:

1
by, = 2/ f(z) sin(nrax)de, (16)
0
which gives the coefficients of the Fourier sine series via a simple integral.

The key point is that this result is not limited to sine functions aftpd=z?. It was
a consequence of the fact th&/dz? is a Hermitian operator that allowed us to expand



any function in terms of the eigenfunctions (sines) and to get the coefficients via the
orthogonality relationship. There are many, many other Hermitian operators that arise
in a variety of problems, for which similar properties héld.

10 The Fourier cosine series

The reason that we got sine functions was the boundary condifighs= f(1) = 0
on our function space. To get cosine functions instead, we merely have to change the
boundary conditions to zerglopeinstead of zerwalueat the boundaries: that is, we
requiref’(0) = f’(1) = 0.

Then, if we look for eigenfunctions of the second derivative, f&(z) = Af(x)
with zero-slope boundaries, we are led to

fn(z) = cos(nmz) 17
A, = —(nm)2. (18)

Now, however, we must allow = 0, since that gives a perfectly good non-zero eigen-
function fy(x) = 1.

The eigenvalues are real, but are the eigenfunctions still orthogonal? We could
check this by explicit integration as in eq. (12), but it is simpler and nicer just to check
thatd?/dz? is still Hermitian. If we look at the integration by parts in eq. (6), it still
works: the boundary terms look likg(x)g’(z) and f'(x)g(z), so they still are zero.

So, we get orthogonality for free!

Again, we can expand “any” reasonable function in terms of the cosine eigenfunc-

tions multiplied by some coefficients,, yielding theFourier cosine series

fz) = % + ,; ap, cos(nmz) (19)
an =2 1 f(z) cos(nmx)dx. (20)
0

Again, we got eqg. (20) by taking the dot product of both sides of eq. (19)saithnrz),
which Kills all of the terms in the series except foe= m, thanks to orthogonality. The
ao term looks a bit funny: the extra factor of2 is there simply becauggcos(nrz)||?
is1/2forn # 0 butis1 for n = 0. By including thel/2 in the series definition (19),
we can use the same formula (20) for all the terms, includirg0.

4Technically, the ability of the eigenfunctions to form a “basis” for the space, i.e. to be able to expand
“any” function in terms of them, is unfortunately not automatic for Hermitian operators, unlike for Hermitian
matrices where it is always true. A Hermitian operator on functions has to satisfy some additional properties
for this property, thespectral theoremto hold. However, the Hermitian operators that arise from physical
problems almost always have these properties, so much so that many physicists and engineers aren’t even
aware of the counter-examples.



11 The Fourier series

The namd-ourier seriesby itself is usually reserved for an expansionféf) in terms
of both sine and cosine. How do we get this? Zero boundaries gave sines, and zero-
slope boundaries gave cosines; what condition do#issine and cosine satisfy? The
answer ieriodicboundaries. To keep the same formulas as above, it is convenient to
look at functionsf (x) onz € [—1, 1], with the dot producf-g = f_ll f(z)g(z)dz. We
then require our functiong(z) to beperiodic f(—1) = f(1) andf’'(-1) = f'(1)..

The periodic eigenfunctions abethsin(nma) andcos(nrx) (i.e. two independent
functions with the same eigenvalue:?72). We already know thatin is orthogonal to
sin andcos to cos, andsin is orthogonal ta:os because the integral of an odd function
multiplied by an even function is zero. Our operatydx=? is still Hermitian: in the
integration by parts [eq. (6)], we get boundary terms Jfke)g’ (z)|! ,, which are zero
because the periodicity means thfét-1)¢'(—1) = f(1)¢'(1).

Finally, we can write out “any” function on € [—1,1] as a sum of sines and
cosines, and get the coefficients by orthogonality as above. However, we will mainly
focus on the sine and cosine series, for simplicity.

12 A positive-definite operator

Let's go back to our original space of functiofigr) for z € [0, 1] with £(0) = f(1) =
0. Instead ofd?/dz?, let's look at—d?/dxz?. Since we just multiplied by-1, this
doesn’t change the Hermitian property or the eigenfunctions, and the eigenvalues just
flip sign. That is, the eigenfunctions are stith(n7x) for n > 0, and the eigenvalues
are now+(nm)?2. Notice that the eigenvalues are pdisitive In analogy with matrices,
we can say that the operateri? /dz? must bepositive definite

However, it is unsatisfying to have to actually find the eigenvalues in order to check
that the operator is positive definite. Solving for the eigenvalues may be hard, or even
impossible without a computer, if we have a more complicated operator. We want a
way to tell that the eigenvalues are positive just by looking at the operator, in the same
way that we could tell that the eigenvalues were real just by integrating the operator by
parts (to check that it is Hermitian). Fortunately, this is quite possible!

To check that an operateris positive definite, we just need to check tifiatl f > 0
for all f(z) # 0. Typically, we can do this just by integrating by parts, and that works
here as well:

f-[ } /.f f@)o = ~f@f @+ [ 1) do -

=A [ (@) da > 0.

So, we can see that the operatal? /dz? is at least positive semidefinite. For it to be
positive definite, we need to make sure that eq. (21) is never zero for a noyf{zgro
The only way for eq. (21) to equal zero isfif(z) = 0, which means thaf(z) is a
constant. But, with the boundary conditigif0) = f(1) = 0, the only constanf (x)



can be is zero. So, eq. (21) is always0 for f(z) # 0, and—d?/dz? is positive-
definite.

There is another way to see the same thing. From eq. (8), we sawAthat
—d?/dz* = BYB, for B = d/dz. Any operator or matrix of the fornB” B is
automatically positive semidefinite (as we saw in class), and is positive-defirite if
has full column rank (i.e., ifB has no non-zero nullspace). Heef = f'(z) = 0
only for f(x) = 0, due to the boundary conditions, by the same reasoning as above, so
A is positive definite.

The ability to do this kind of analysis is tremendously important, because it allows
us to say a lot about the eigenvalues of differential operators, even sometimes very
complicated operators, without having to solve a horrible differential equation.

13 Fourier (sine) series applications

With diagonalizable matriced, once we knew the eigenvalugsand eigenvectors we
could do all sorts of marvelous things: we could invert the matrix just by inverting
the eigenvalues (if they are nonzero), we could take exponentials just by taking

could compute powerd™ via \"™ (even square roots of matrices), and so on. The basic
strategy was always the same: write an arbitrary vector in the basis of the eigenvectors,
and thenA acting on each eigenvector acts just like a simple numberhis is the

whole point of eigenvectors: they turn horrible things like matrices into simple num-
bers. Things work in exactly the same way with differential operators! Below are a
couple of nice examples.

13.1 The diffusion equation

If we have a system of linear differential equatiahs/dt = Ax with an initial con-
dition x(0), we saw in class that the solution was jusgt) = e“4'x(0). The matrix
exponential at first seemed rather strange, but in terms of the eigenvectors it is simple:
we first writex(0) in the basis of eigenvectors, then multiply each eigenvecter‘hy

Now, let's look at the analogous problem ofidfusion equation

0 0?
a (.Iﬁ,t) = @f(ﬂ?,t), (22)

where the initial conditionf(z,0) is given, and at each timewe havef(0,t) =
f(1,t) = 0 (the same boundary conditions as for the sine series, hint hint). This
equation is used to describe diffusion, e fcould be the concentration of salt in a
solution of water; if you start out with a high concentration of salt in one region at
t = 0, it should diffuse to other regions over time. Ofr, it could also describe heat
conduction, wherg might be a temperature difference.

In any case, eq. (22), if we squint at it, is in the same formsg&it = Ax, with
x replaced by the functiogi and the matrix4 replaced by the operaté¥ /dz2. Thus,
by analogy, we should be able to immediately write down the “solution”

f(x,t) = e'5e= f(x,0). (23)

10



But wait a minute, what is the exponential of a second derivative? What does this even
mear? We could definite it by a power series expansion, just as for matrices, but it is
much more useful to think about what it does to eigenfunctions:

—(nm)?

Psin(nmx). (24)

e'5e? sin(nrz) = e

That is, we may not know what the exponential of a second derivative is in general, but
we surely know what it does to an eigenfunction: For an eigenfunstigm=z), the
second derivativé? /9z2 must act just like mumbey the eigenvalue-(nr)?.

Now that we know what the solution is for the eigenfunctions, however, we are
done! We just expand the initial conditiof(x, 0) via the sine series, multiply each
sin(nmz) by exp(—(nn)?t), and voila, we have the solution:

flz,t) = Z bpe (7™ sin(nmx), (25)

n=1

whereb,, = 2]01 f(z,0)sin(nmx) as in eq. (16).

Of course, even if we can compute the coefficients analytically [iff (z,0) is
simple enough to integrate], we probably can’t add up the series (25) by hand. Butitis
no problem to add up 100 or 1000 terms of the series on a computer, to get the solution
as a function of time.

Also, we have learned quite a bit just by writing down the series solution eq. (25).
First, notice that all of the terms go exponentially to zef¢z, co) = 0 (with these
boundary conditions, everything “diffuses away” out of the boundaries). Second, no-
tice that the large: terms decay faster than the smalteterms: in diffusion problems,
fast oscillations (large) quickly smooth out, and eventually we are dominated by the
n = 1 termsin(nx).

13.2 Poisson’s equation

With matrices, solvingdx = b for x is fairly hard, it requires us to do elimination
or something similar{ n® work). However, ifA is diagonalizable and we know the
eigenvectors, it is no problem: we just expdnéh the eigenvectors, multiply each by
1/), and we are done.
Now, let's look at an analogous problem for a linear operdtoisson’s equatian
d2
— f(x) = g(x), 26
5 1(@) = g(2) (26)
in which we are givery(z) and want to findf (z) such thatf(0) = f(1) = 0. Again,
this is “just” solving a linear equation, except that we have functions instead of vectors.
Again, if we had eigenfunctions, we would know what to do: the solution to
d2
e
5If A is not invertible, then we require to be in the column space, which means that it must be in the
span of the\ # 0 eigenvectors. And if we have a solution, it is not unique: we can add anything in the

nullspace, which is the span of the= 0 eigenvectors. So, the eigenvectors still tell us everything even in
the non-invertible case.

f(x) = sin(nnx), (27)

11



is clearly justf(z) = sin(nmx)/[—(n7)?]. Thatis, for eigenfunctions, we just take
1/ as usual to solve the problem. And now we know what to do for an arbijitary

we expand it in a sine series, and divide each term by the eigenvalue. That is, the
general solution is

flx,t) = nz::l _(bgﬂ) sin(nmx), (28)
whereb,, = 2 fol g(x) sin(nmz) as in eq. (16).
In this case, the operatd? /dz? is invertible because all the eigenvalues are non-

zero. In the next problem set, you will think a little about the casg @f) = f'(1) =0
boundary conditions, where one obtains a cosine series and there is a zero eigenvalue.

14 More examples of Hermitian operators

In class, we focused on the case of the operdtgriz2, which has the virtue that its
eigenfunctions can be found analytically, and so we can see properties like orthogonal-
ity and real eigenvalues explicitly. However, the real power of looking at differential
operators in this way comes for problems that gannotsolve analytically (or where
the solutions are very difficult). You can learn so much just by integrating by parts a
couple of times, which is a lot easier than solving a partial differential equation. In this
section, we'll give a few example of other operators that can be analyzed in this way.

In homework, you'll look at the operatot f = —%[w(m)df/dx] for some func-
tionw(z) > 0, which is also straightforwardly shown to be Hermitian positive-definite.
This operator arises in many problems; for example, it appears when studying electro-
magnetic waves going through different materials, wheéie the magnetic field and
1/w(x) is the square of the refractive index.

In quantum mechanics, one studies eigenproblems of the form (in one dimension)

2
i V)| v = Bete) (29)
where the eigenfunction is a quantum probability amplitude, the eigenvaliés the
energy, and/ (z) is some potential energy function. This is clearly Hermitian, since it
is the sum of two Hermitian operators:d? /dz?, andV (x) (which just multiplies the
function by a real number at each point, and is trivially Hermitian). So, we immediately
obtain the result that the enerdy is real, which is good! (What would a complex
energy mean?) And the eigenfunction&r) are orthogonal, which turns out to have
important physical consequences for the probabilities. And we learn all of this without
solving it, which might be quite difficult depending dn(z) is. One famous case is
whereV (z) = 22, in which case the eigenfunctions are calléermite functionsind
are important in many fields of science and mathematics.

Another important differential operator is:

Af(z) = |~ — —— +a®| f(2) (30)
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for functions withf(0) = f(1) = 0 and some constant This operator is Hermitian
positive-definite under the inner produgt g = fol f(@)g(x)xdz, which arises in
cylindrical coordinates (think = r). The eigenfunctions are famous functions known
asBessel functionsut even if you don’t know what these are you now know that they
are orthogonal under this inner product, and that their eigenvalues are positive.

The preceding examples were for one-variable functipfs). Of course, there
are lots of interesting problems in two and three spatial dimensions, too! We'll just
give one example here. Suppose you have a drum (the musical instrument), and the
drum head is some shape. Lgtz,y) be the height of the drum head at each point
(z,y), with f(x,y) = 0 at the boundaries of the drum head. One interesting problem
is to find thestanding-wavenodes, which are solution§ «, y) sin(wt) that oscillate
at some fixed frequency. The standing-wave solutions satisfy the equation:

[ 0? 0?

gz x| Fw) =210 @)

Again, the linear operator on the left-hand side is Hermitian positive-definite with the
inner productf - g = [[ f(z,y)g(x,y)dzdy. The proof is almost exactly the same as
for —d?/dx? in one dimension: we just integrate by partgifor thed? /02 term, and

in y for the 9% /0y? term. This tells us that is real, which is good because it means
that the solutions are oscillating instead of exponentially decaying or growing (as they
would for complexw). Solving for the eigenfunctiong(x, y) explicitly, however, is
quite hard in general (unless the drum head has a special shape, like square or circular).
However, we do know that the eigenfunctions are orthogonal and form a basis for
arbitrary functionsf(x,y). If you hit the drum, the frequencies that you hear are
determined by taking the function that you hit the drum with (i.e., where you press
down) and expanding it in the eigenfunctions. Hitting it at different points excites
different eigenfunctions with different coefficients, and produces different tones.
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