	Grading
Your PRINTED name is:	1
	2
	3

Please circle your recitation:

1)	M 2	2-131	P. Lee	2-087	2-1193	lee
2)	M 2	2-132	T. Lawson	4-182	8-6895	tlawson
4)	T 10	2-132	P-O. Persson	2-363A	3-4989	persson
5)	T 11	2-131	P-O. Persson	2-363A	3-4989	persson
6)	T 11	2-132	P. Pylyavskyy	2-333	3-7826	pasha
7)	T 12	2-132	T. Lawson	4-182	8-6895	tlawson
8)	T 12	2-131	P. Pylyavskyy	2-333	3-7826	pasha
9)	T 1	2-132	A. Chan	2-588	3-4110	alicec
10)	T 1	2-131	D. Chebikin	2-333	3-7826	chebikin
11)	T 2	2-132	A. Chan	2-588	3-4110	alicec
12)	T 3	2-132	T. Lawson	4-182	8-6895	tlawson

1 (30 pts.) The matrix A has a varying 1-x in the (1,2) position:

$$A = \begin{bmatrix} 2 & \mathbf{1} - \mathbf{x} & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 4 \\ 1 & 1 & 3 & 9 \end{bmatrix}$$

- (a) When x = 1 compute $\det A$. What is the (1,1) entry in the inverse when x = 1?
- (b) When x = 0 compute $\det A$.
- (c) How do the properties of the determinant say that $\det A$ is a linear function of x? For any x compute $\det A$. For which x's is the matrix singular?

2 (30 pts.) This matrix Q has orthonormal columns q_1, q_2, q_3 :

$$Q = \begin{bmatrix} .1 & .5 & a \\ .7 & .5 & b \\ .1 & -.5 & c \\ .7 & -.5 & d \end{bmatrix}.$$

- (a) What equations must be satisfied by the numbers a, b, c, d? Is there a unique choice for those numbers, apart from multiplying them all by -1?
- (b) Why is $P = QQ^{T}$ a projection matrix? (Check the two properties of projections.) Why is QQ^{T} a singular matrix? Find the determinants of $Q^{T}Q$ and QQ^{T} .
- (c) Suppose Gram-Schmidt starts with those same first two columns and with the third column $a_3=(1,1,1,1)$. What third column would it choose for q_3 ? You may leave a square root not completed (if you want to).

- **3 (40 pts.)** Our measurements at times t = 1, 2, 3 are b = 1, 4, and b_3 . We want to fit those points by the nearest line C + Dt, using least squares.
 - (a) Which value for b_3 will put the three measurements on a straight line? Which line is it? Will least squares choose that line if the third measurement is $b_3 = 9$? (Yes or no).
 - (b) What is the linear system Ax = b that would be solved exactly for x = (C, D) if the three points do lie on a line? Compute the projection matrix P onto the column space of A. Remember the inverse

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

- (c) What is the rank of that projection matrix P? How is the column space of P related to the column space of A? (You can answer with or without the entries of P computed in (b).)
- (d) Suppose $b_3 = 1$. Write down the equation for the best least squares solution \hat{x} , and show that the best straight line is horizontal.