		Grading
Your PRINTED name is:	SOLUTIONS	1
		2
		3

Please circle your recitation:

1)	M 2	2-131	P. Lee	2-087	2-1193	lee
2)	M 2	2-132	T. Lawson	4-182	8-6895	tlawson
4)	T 10	2-132	PO. Persson	2-363A	3-4989	persson
5)	T 11	2-131	PO. Persson	2-363A	3-4989	persson
6)	T 11	2-132	P. Pylyavskyy	2-333	3-7826	pasha
7)	T 12	2-132	T. Lawson	4-182	8-6895	tlawson
8)	T 12	2-131	P. Pylyavskyy	2-333	3-7826	pasha
9)	T 1	2-132	A. Chan	2-588	3-4110	alicec
10)	T 1	2-131	D. Chebikin	2-333	3-7826	chebikin
11)	T 2	2-132	A. Chan	2-588	3-4110	alicec
12)	Т 3	2-132	T. Lawson	4-182	8-6895	tlawson

- 1 (30 pts.) Suppose A is m by n with linearly dependent columns. Complete with as much true information as possible:
 - (a) The rank of A is ...

at most n-1 (and at most m, which is a stronger statement if m < n-1).

(b) The nullspace of A contains ...

at least one non-zero vector. (The dimension of the nullspace is n minus the column rank of A, i.e., at least 1.)

(c) (more words needed) The equation $A^{T}y = b$ has no solution for some right hand sides b because . . .

the rows of the matrix A^{T} , which are the same as the columns of A, are linearly dependent, so A^{T} is not full row-rank. Thus the reduced row echelon form of A^{T} contains a row of all zeroes, so the components of b must satisfy a certain linear relation in order for $A^{\mathrm{T}}y = b$ to have a solution.

2 (40 pts.) Suppose A is this 3 by 4 matrix:

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{array} \right]$$

- (a) A specific basis for the column space of A is ______
- (b) For which vectors $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ does Ax = b have a solution? Give conditions on b_1, b_2, b_3 .
- (c) There is no 4 by 3 matrix B for which AB = I (3 by 3). Give a good reason (is this because A is rectangular?).
- (d) Find the complete solution to $Ax = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

Solution

(a)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ is a basis for the column space of A . So is $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

(b) Row reducing the augmented matrix $[A \ b]$, we get

$$\begin{bmatrix} 1 & 2 & 3 & 4 & b_1 \\ 0 & -1 & -2 & -3 & b_2 - 2b_1 \\ 0 & 0 & 0 & 0 & b_3 - 2b_2 + b_1 \end{bmatrix}.$$

The linear equations corresponding to the top two rows can be satisfied regardless of the values of b_1 and b_2 , and the bottom row of all zeroes imposes the condition $b_3 - 2b_2 + b_1 = 0$. Hence Ax = b has a solution if and only if $b_3 - 2b_2 + b_1 = 0$.

3

- (c) This is because A is not full row-rank, as shown in part (b). If AB = I then we could solve $Ab_1 = \text{row } 1$ of I, $Ab_2 = \text{row } 2$ of I, $Ab_3 = \text{row } 3$ of I, and every equation Ax = b. Actually the solution would be x = Bb. But in part (b) we saw that Ax = b has no solution for some b.
- (d) We perform the row reduction

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 2 & 3 & 4 & 5 & 0 \\ 3 & 4 & 5 & 6 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 0 & -1 & -2 & -3 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Then
$$x_p = \begin{bmatrix} -3 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$
 is a particular solution, and $s_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}$ and $s_4 = \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}$ are

special solutions forming a basis of the nullspace of A. Hence the general solution is

$$x = x_p + x_n = x_p + cs_3 + ds_4.$$

3 (30 pts.) (a) Find a basis for the vector space of all real 3 by 3 symmetric matrices.

(b) Suppose A is a square invertible matrix. You permute its rows by a permutation P to get a new matrix B. How do you know that B is also invertible?

(c) "If 2 matrices have the same shape and the same nullspace, then they have the same column space." If this is true, give a reason why. If this is not true, find 2 matrices to show it's false.

Solution

(a) The most natural basis is

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

(b) A being invertible means that A has full rank. Permuting the rows has no effect on the rank, so B has full rank as well, and is thus invertible. (Another argument: the permutation matrix P is invertible, and so $B^{-1} = (PA)^{-1} = A^{-1}P^{-1}$.)

(c) The statement is false. Example: $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ have the same nullspace (the line spanned by the vector (1, -1)), but their column spaces differ (for A, it's the line spanned by the vector (1, 1), and for B, it's the line spanned by the vector (1, 2)).

Remark (now on the web page)

The real 3 by 3 matrices form a vector space M. The symmetric matrices in M form a subspace S. If you add two symmetric matrices, or multiply by real numbers, the result is still a symmetric matrix. **Problem: Find a basis for S.**

When I asked this question on an exam, I realized that a key point needs to be emphasized:

The basis "vectors" for S must lie in the subspace. They are 3 by 3 symmetric matrices! Then there are two requirements:

- 1. The basis vectors must be linearly independent.
- 2. Their combinations must produce every vector (matrix) in S.

Here is one possible basis (all symmetric) for this example:

$$S_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad S_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad S_{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$S_{4} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad S_{5} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad S_{6} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Since this basis contains 6 vectors, the dimension of S is 6.