	Grading
Your PRINTED name is:	1
	2
	3

Please circle your recitation:

1)	M 2	2-131	P. Lee	2-087	2-1193	lee
2)	M 2	2-132	T. Lawson	4-182	8-6895	tlawson
4)	T 10	2-132	PO. Persson	2-363A	3-4989	persson
5)	T 11	2-131	PO. Persson	2-363A	3-4989	persson
6)	T 11	2-132	P. Pylyavskyy	2-333	3-7826	pasha
7)	T 12	2-132	T. Lawson	4-182	8-6895	tlawson
8)	T 12	2-131	P. Pylyavskyy	2-333	3-7826	pasha
9)	T 1	2-132	A. Chan	2-588	3-4110	alicec
10)	T 1	2-131	D. Chebikin	2-333	3-7826	chebikin
11)	T 2	2-132	A. Chan	2-588	3-4110	alicec
12)	Т 3	2-132	T. Lawson	4-182	8-6895	tlawson

1	(30 pts.)	Supp	cose A is m by n with linearly dependent columns . Complete with
		as m	uch true information as possible:
		(a)	The rank of A is
		(b)	The nullspace of A contains
			(more words needed) The equation $A^{\mathrm{T}}y=b$ has no solution for some
			right hand sides b because

2 (40 pts.) Suppose A is this 3 by 4 matrix:

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{array} \right]$$

- (a) A specific basis for the column space of A is ______
- (b) For which vectors $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ does Ax = b have a solution? Give conditions on b_1, b_2, b_3 .
- (c) There is no 4 by 3 matrix B for which AB = I (3 by 3). Give a good reason (is this because A is rectangular?).
- (d) Find the complete solution to $Ax = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

- 3 (30 pts.) (a) Find a basis for the vector space of all real 3 by 3 symmetric matrices.
 - (b) Suppose A is a square invertible matrix. You permute its rows by a permutation P to get a new matrix B. How do you know that B is also invertible?
 - (c) "If 2 matrices have the same shape and the same nullspace, then they have the same column space." If this is true, give a reason why. If this is not true, find 2 matrices to show it's false.