18.06 Problem Set 9

SOLUTIONS

1. Section 6.4, Problem 4

Answer:
$$Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$
.

2. Section 6.4, Problem 6

Answer:
$$Q = \begin{bmatrix} .8 & .6 \\ -.6 & .8 \end{bmatrix}$$
 or $Q = \begin{bmatrix} -.8 & .6 \\ .6 & .8 \end{bmatrix}$ or exchange columns.

3. Section 6.4, Problem 10

Answer: If x is not real then $\lambda = x^T A x / x^T x$ is not necessarily real. Can't assume real eigenvectors!

4. Section 6.4, Problem 14

Answers: Skew-symmetric and orthogonal; $\lambda = i, i, -i, -i$ to have trace 0.

5. Section 6.4, Problem 25

Answers: Symmetry gives $Q\Lambda Q^T$ when b=1; repeated λ and no S when b=-1; singular if b=0.

6. Section 6.4, Problem 27

Answer: Eigenvectors (1,0) and (1,1) give a 45 degree angle even with A^T very close to A.

7. Section 6.5, Problem 7

Answer:
$$A^T A = \begin{bmatrix} 1 & 2 \\ 2 & 13 \end{bmatrix}$$
 and $A^T A = \begin{bmatrix} 6 & 5 \\ 5 & 6 \end{bmatrix}$ are positive definite; $A^T A = \begin{bmatrix} 2 & 3 & 3 \\ 3 & 5 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ is singular.

8. Section 6.5, Problem 9

Answers:
$$A=\begin{bmatrix}4&-4&8\\-4&4&-8\\8&-8&16\end{bmatrix}$$
 has only one pivot = 4; rank of A is 1; eigenvalues of A are $24,0,0$; $\det A=0$.

9. Section 6.5, Problem 15

Solution: Since $x^T A x > 0$ and $x^T B x > 0$, we have $x^T (A + B) = x = x^T A x + x^T B x > 0$ for all $x \neq 0$. Hence A + B is a positive definite matrix.

10. Section 6.5, Problem 20

Answers: (a) The determinant is positive, all $\lambda > 0$;

- (b) All projection matrices except I are singular (because for all such matrices there is a non-zero vector whose projection is 0);
- (c) The diagonal entries of D are its eigenvalues;
- (d) -I has $\det = 1$ when n is even.
- 11. Section 6.5, Problem 28

Answers: $\det A = 10$; $\lambda = 2, 5$; $x_1 = (\cos \theta, \sin \theta)$, $x_2 = (-\sin \theta, \cos \theta)$; the λ 's are positive.

12. Section 10.2, Problem 14

Solution: If $U^HU=I$ then $U^{-1}(U^H)^{-1}=U^{-1}(U^{-1})^H=I$ so U^{-1} is also unitary. Also $(UV)^HUV=V^HU^HUV=V^HV=I$, so UV is unitary.

13. Section 10.2, Problem 16

Solution: $(z^H A^H)(Az) = ||Az||^2$ is positive unless Az = 0; with independent columns Az = 0 means z = 0. Thus $z^H A^H Az > 0$ for $z \neq 0$, and $A^H A$ is positive definite.

14. (a) The eigenvalues of A are $\lambda_{1,2}=3,-1$, and the corresponding eigenvectors are $v_1=(1,1)$ and $v_2=(1,-1)$. Thus we have

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ & -1 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

and

$$e^{At} = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right] \left[\begin{array}{cc} e^{3t} \\ & e^{-t} \end{array} \right] \cdot \frac{1}{2} \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right] = \frac{1}{2} \left[\begin{array}{cc} e^{3t} + e^{-t} & e^{3t} - e^{-t} \\ e^{3t} - e^{-t} & e^{3t} + e^{-t} \end{array} \right].$$

(b) From the eigenvalues and the eigenvectors of A obtained in the previous part we get two independent solutions to u' = Au: $u_1 = e^{3t}v_1$ and $u_2 = e^{-t}v_2$. Thus

$$\Phi(t) = \left[\begin{array}{cc} e^{3t} & e^{-t} \\ e^{3t} & e^{-t} \end{array} \right]$$

is a fundamental matrix. Normalizing, we get

$$e^{At} = \Phi_N(t) = \Phi(t) \cdot (\Phi(0))^{-1} = \begin{bmatrix} e^{3t} & e^{-t} \\ e^{3t} & e^{-t} \end{bmatrix} \cdot \left(\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right)^{-1} = \frac{1}{2} \begin{bmatrix} e^{3t} + e^{-t} & e^{3t} - e^{-t} \\ e^{3t} - e^{-t} & e^{3t} + e^{-t} \end{bmatrix}.$$

(c) Decompose $At = Bt - cIt = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} t - It$. We have

$$\left[\begin{array}{cc}2&2\\2&2\end{array}\right]^2=\left[\begin{array}{cc}8&8\\8&8\end{array}\right]; \quad \left[\begin{array}{cc}2&2\\2&2\end{array}\right]^3=\left[\begin{array}{cc}32&32\\32&32\end{array}\right]; \quad \left[\begin{array}{cc}2&2\\2&2\end{array}\right]^k=\frac{1}{2}\left[\begin{array}{cc}4^k&4^k\\4^k&4^k\end{array}\right].$$

Hence

$$e^{Bt} = I + \frac{1}{2} \sum_{k=1}^{\infty} \frac{t^k}{k!} \begin{bmatrix} 4^k & 4^k \\ 4^k & 4^k \end{bmatrix} = I + \frac{1}{2} \begin{bmatrix} e^{4t} - 1 & e^{4t} - 1 \\ e^{4t} - 1 & e^{4t} - 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} e^{4t} + 1 & e^{4t} - 1 \\ e^{4t} - 1 & e^{4t} + 1 \end{bmatrix}$$

and

$$e^{At} = e^{Bt} \cdot e^{-It} = \frac{1}{2} \left[\begin{array}{cc} e^{4t} + 1 & e^{4t} - 1 \\ e^{4t} - 1 & e^{4t} + 1 \end{array} \right] \left[\begin{array}{cc} e^{-t} \\ & e^{-t} \end{array} \right] = \frac{1}{2} \left[\begin{array}{cc} e^{3t} + e^{-t} & e^{3t} - e^{-t} \\ e^{3t} - e^{-t} & e^{3t} + e^{-t} \end{array} \right].$$

(d) Plugging in t = 1 and t = 2, we have

$$e^A = \frac{1}{2} \left[\begin{array}{cc} e^3 + e^{-1} & e^3 - e^{-1} \\ e^3 - e^{-1} & e^3 + e^{-1} \end{array} \right]; e^{2A} = \frac{1}{2} \left[\begin{array}{cc} e^6 + e^{-2} & e^6 - e^{-2} \\ e^6 - e^{-2} & e^6 + e^{-2} \end{array} \right].$$

The second matrix is the square of the first, as can be checked by direct computation.