
18.06, Fall 2004, Problem Set 9 Solutions

1. (5 pts) P is symmetric since P = A(AT A)−1AT (where we have kept only linearly independent
columns of A if A did not have full column rank to start with). In lecture (and in the book),
we saw that symmetric matrices are diagonalizable.

We can also get explicitly a diagonalization. For this, take an orthonormal basis of C(A), say
q1, · · · , qr and also an orthonormal basis of C(A)⊥ = N(AT ), say qr+1, · · · , qm and construct
the m×m matrix Q whose columns are the qi’s. Q is orthogonal: QT = Q−1. The diagonal-
ization is now A = QΛQ−1 where Λ is a diagonal matrix with λ1 = λ2 = · · · = λr = 1 and
λr+1 = · · · = λm = 0.

2. (22 pts.) Consider the matrix:

A =









0.5 b 0 a
a 0.5 b 0
0 a 0.5 b
b 0 a 0.5









(a) a, b ≥ 0, a + b = 0.5

(b)








0.5 b 0 a
a 0.5 b 0
0 a 0.5 b
b 0 a 0.5

















1
1
1
1









=









0.5 + b + a
0.5 + b + a
0.5 + b + a
0.5 + b + a









= (0.5 + b + a)









1
1
1
1









,

so 0.5 + a + b is an eigenvalue. When a + b = 0.5, this is what we expected since every
Markov matrix has an eigenvalue equal to 1.

(c) ω = ±i,±1.

(d)








0.5 b 0 a
a 0.5 b 0
0 a 0.5 b
b 0 a 0.5

















1
ω
ω2

ω3









= (0.5 + bω + aω3)









1
ω
ω2

ω3









.

The corresponding eigenvalue is 0.5 + bω + aω3. Here are the 4 eigenvalues:

ω eigenvalue

1 0.5 + b + a
−1 0.5 − b − a
i 0.5 + i(b − a)
−i 0.5 − i(b − a)

(e) We just found 4 lineearly independent eigenvectors, so this means that for every eigen-
value its geometric multiplicity (given by the dimension of the nullspace of A − λI)
must be equal to its algebraic multiplicity. The eigenvalues are dictinct (and thus their
geometric multiplicity is 1) for all values of a and b, except when a + b = 0 or when
a−b = 0 for which λ = 0.5 is an eigenvalue of geometric multiplicity 2 (or 4 if a = b = 0).
Thus, we have an eigenvalue (equal to 0.5) of algebraic multiplicity greater than 1 when
a = ±b.
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(f) The determinant is the product of the eigenvalues. detA = (0.5 + a + b)(0.5 − (a +
b))(0.5 + i(b − a))(0.5 − i(b − a)) = (0.25 − (a + b)2)(0.25 + (a − b)2).

(g) Yes, because A has four linearly independent eigenvectors for any values of a and b, and
this is sufficient to guarantee that it is diagonalizable.

(h) The modulus of all eigenvalues of A should be less or equal to 1, we get that −0.5 ≤
a + b ≤ 0.5 and −

√
3/2 ≤ a− b ≤

√
3/2. This is a rectangular region in the (a, b)-plane.

(i) Assume a = 0.487654123. Then we get:

>> A=[0.5 b 0 a; a 0.5 b 0; 0 a 0.5 b; b 0 a 0.5]

A =

0.5000 0.0123 0 0.4877

0.4877 0.5000 0.0123 0

0 0.4877 0.5000 0.0123

0.0123 0 0.4877 0.5000

>> eig(A)

ans =

0

1.0000

0.5000 + 0.4753i

0.5000 - 0.4753i

>> det(A)

ans =

0

This coresponds to (2d) and (2f).

(j) >> A^100

ans =

0.2500 0.2500 0.2500 0.2500

0.2500 0.2500 0.2500 0.2500

0.2500 0.2500 0.2500 0.2500

0.2500 0.2500 0.2500 0.2500

It tends to (1/4, 1/4, 1/4, 1/4); this is the eigenvector corresponding to λ = 1 (ω = 1)
properly scaled so that the sum of the entries equal to 1.
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3. (9 pts) Consider the 2 × 3 grid shown below. Assume a mouse starts at vertex 1. At every
step, the mouse either stays where it is with probability 0.5 or moves to an adjacent vertex
selected uniformly among the current neighbors.

3

5

21

4 6

(a) The transition matrix A for this Markov Chain is:

















1/2 1/6 0 1/4 0 0
1/4 1/2 1/4 0 1/6 0
0 1/6 1/2 0 0 1/4

1/4 0 0 1/2 1/6 0
0 1/6 0 1/4 1/2 1/4
0 0 1/4 0 1/6 1/2

















(b) The sum of the eigenvalues of A is equal to the trace, which is 3.

(c) A =

0.5000 0.1667 0 0.2500 0 0

0.2500 0.5000 0.2500 0 0.1667 0

0 0.1667 0.5000 0 0 0.2500

0.2500 0 0 0.5000 0.1667 0

0 0.1667 0 0.2500 0.5000 0.2500

0 0 0.2500 0 0.1667 0.5000

>> eig(A)

ans =

1.0000

-0.0000

0.7500

0.2500

0.5833

0.4167

If we were doing exact arithmetic, we would get 1, 0, 3/4, 1/4, 7/12, 5/12.

(d) The steady state probabilities will be given by the eigenvector corrresponding to λ = 1
appropriately scaled:
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>> [L,V]=eig(A)

L =

0.3430 0.3430 -0.5000 -0.5000 -0.2887 0.2887

0.5145 -0.5145 0.0000 0.0000 -0.5774 -0.5774

0.3430 0.3430 0.5000 0.5000 -0.2887 0.2887

0.3430 -0.3430 -0.5000 0.5000 0.2887 0.2887

0.5145 0.5145 -0.0000 0.0000 0.5774 -0.5774

0.3430 -0.3430 0.5000 -0.5000 0.2887 0.2887

V =

1.0000 0 0 0 0 0

0 -0.0000 0 0 0 0

0 0 0.7500 0 0 0

0 0 0 0.2500 0 0

0 0 0 0 0.5833 0

0 0 0 0 0 0.4167

>> L(:,1)/sum(L(:,1))

ans =

0.1429

0.2143

0.1429

0.1429

0.2143

0.1429

This is the vector (1/7, 3/14, 1/7, 1/7, 3/14, 1/7). Thus the steady-state probability that
the mouse is on either of the middle vertices is 3/14 + 3/14 = 3/7 = 0.428571 · · · .
We verify that indeed the columns of Ak tend to the scaled eigenvector of A corresponding
to λ = 1:

>> A^100

ans =

0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

0.2143 0.2143 0.2143 0.2143 0.2143 0.2143

0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

0.2143 0.2143 0.2143 0.2143 0.2143 0.2143
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0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

4. (4 pts.) First, let us compute the eigenvalues of K. The characteristic polynomial is −λ(i −
λ) − (−1 + i)(1 + i) = λ2 − iλ + 2, and its roots are λ1 = −i and λ2 = 2i. The eigenvalues
are pure imaginary. The eigenvectors are v1 = (−1 − i, 1) and v2 = (0.5 + 0.5i, 1); thus the
matrix of eigenvectors is:

V =

[

−1 − i 0.5 + 0.5i
1 1

]

.

Thus we have that

K = V

[

−i 0
0 2i

]

V −1.

We need V H and not V −1. But the columns of V (the eigenvectors) are orthogonal and we

see that V HV =

[

3 0
0 1.5

]

. Thus we just have to scale the eigenvectors (to norm 1) to get

U =





1√
3
(−1 − i) 1√

3/2
(0.5 + 0.5i)

1√
3

1√
3/2



 .

And now we have that

K = U

[

−i 0
0 2i

]

UH .

There are actually other solutions for U as we can multiply U by any diagonal matrix with
all diagonal elements of modulus 1 such as:

[

−i 0

0
√

2

2
(1 − i)

]

.
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