
18.06, Fall 2004, Problem Set 8 Solutions

1. (7 pts.) Let

A =







0 1 2
−1 0 1
4 1 0






.

(a) Cij is given by (−1)i+j det(Mij) where Mij is obtained from A by removing row i and
column j.

C =







−1 4 −1
2 −8 4
1 −2 1






.

(b) Using the cofactor formula, say along row 1, we get:

det(A) = 0 · (−1) + 1 · 4 + 2 · (−1) = 2.

(c) We have that

A−1 =
1

det(A)
CT =

1

2







−1 2 1
4 −8 −2
−1 4 1






.

We verify that

AA−1 =
1

2







0 1 2
−1 0 1
4 1 0













−1 2 1
4 −8 −2
−1 4 1






= I.

(d)
det(−3A4) = (−3)3 det(A4) = −27 det(A)4 = −27 · 16 = −432.

2. (5 pts.) The system is Ax = b where

A =











2 1 −1 1
−1 2 1 0
0 −3 1 −1
1 7 0 3











,

and

b =











5
−6
1
−1











.
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Cramer’s rule says that

x3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1 5 1
−1 2 −6 0
0 −3 1 −1
1 7 −1 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1 −1 1
−1 2 1 0
0 −3 1 −1
1 7 0 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
−8

8
= −1.

3. (5 pts.) The fifth pivot is given by:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4 0
0 2 4 6 0
−1 −2 2 4 0
5 4 3 1 0
2 1 1 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
0 2 4 6
−1 −2 2 4
5 4 3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Using the cofactor formula for the determinant in the numerator along the last column, we
see that the numerator is twice the denominator, thus the fifth pivot is equal to 2.

4. (4 pts.) The two rows must be multiples of each other. Thus the first row must equal
the second one times x. Hence we get that y = x2 and 8 = xy. From this we derive that
8 = x3 and y = x2 which has 3 solutions: (x, y) = (2, 4), (x, y) = (2ei2π/3, 4ei2π/3) and
(x, y) = (2ei4π/3, 4ei4π/3).

5. (6 pts.)

The characteristic polynomial for A is:

det(A − λI) =

∣

∣

∣

∣

∣

2 − λ −1
1 2 − λ

∣

∣

∣

∣

∣

= (2 − λ)2 + 1,

and its roots (thus the eigenvalues) are: λ1 = 2 + i and λ2 = 2 − i.

The eigenvector corresponding to λ1 = 2+i is a non-zero vector of the nullspace of A−(2+i)I:

[

−i −1
1 −i

]

.

We can take v1 =

[

1
−i

]

or any non-zero (even complex) scalar multiple of it.
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The eigenvector corresponding to λ2 = 2−i is a non-zero vector of the nullspace of A−(2−i)I:
[

i −1
1 i

]

.

We can take v2 =

[

1
i

]

or any non-zero (even complex) scalar multiple of it.

6. (7 pts.) Let

A =







2 −2 3
1 1 1
1 3 −1






.

(a)

det(A − λI) =

∣

∣

∣

∣

∣

∣

∣

2 − λ −2 3
1 1 − λ 1
1 3 −1 − λ

∣

∣

∣

∣

∣

∣

∣

= (2 − λ)[(1 − λ)(−1 − λ) − 3] + 2(−1 − λ − 1) + 3(3 − 1 + λ)

= (2 − λ)(λ2 − 4) + 2 + λ

= −λ3 + 2λ2 + 5λ − 6

(b) Substituting λ = 1 in the characteristic polynomial, we observe that it is indeed a root
of it, and therefore an eigenvalue. For an eigenvector we need to look at the nullspace
of A − I:

A − I =







1 −2 3
1 0 1
1 3 −2






.

Doing row eliminations, we first get:






1 −2 3
0 2 −2
0 5 −5






,

and then






1 −2 3
0 2 −2
0 0 0






.

The special solution, and thus an eigenvector corresponding to λ = 1, is then:






−1
1
1






.

(c) To find the other eigenvalues we can first factor λ−1 from the characteristic polynomial,
and then find the remaining roots:

−λ3 + 2λ2 + 5λ − 6 = −(λ − 1)(λ2 − λ − 6).
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The roots of the quadratic λ2 − λ − 6 are 3 and -2, and these are the remaining eigenvalues.

7. (6 pts.)

(a) The easiest way (or the least difficult...) to argue this is the following. Let’s assume that
λ is an eigenvalue of a permutation matrix P and v is the corresponding eigenvector.
Thus Pv = λv. Both v and λ can be complex (and they typically are). Now look at the
sum of the modulus of the vi’s, i.e.

∑

i |vi|. As P is a permutation matrix, Pv has the
same entries as v except that they are in a different order. Thus

∑

i

|(Pv)i| =
∑

i

|vi|. (1)

But, for two complex numbers a and b, we have that |ab| = |a| · |b|. Thus
∑

i |(Pv)i| =
∑

i |λvi| = |λ|
∑

i |vi|. Combining this with (1), we get that |λ| = 1.

(b) Let

P =















0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0















.

Let λ1, λ2, · · · , λ5 be its eigenvalues. There are several ways again to compute the eigen-
values. One could find the characteristic polynomial and find its roots. Here is another
shorter way.

We know that all eigenvalues have modulus 1, so they can be expressed as eiθi . Observe
that

P 2 =















1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0















.

The eigenvalues of P 2 must be λ2
1, λ

2
2, · · · , λ

2
5. But 1 is clearly an eigenvalue of P 2

with multiplicity 2 (both geometric and algebraic) as both v1 = (1, 0, 0, 0, 0) and v2 =
(0, 1, 0, 0, 0) are vectors1 such that P 2v1 = v1 and P 2v2 = v2. This implies that λ2

1 =
λ2

2 = 1 and thus λ1 ∈ {−1, 1} and λ2 ∈ {−1, 1}.

Now P 3 is:

P 3 =















0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1















.

1There is a subtlety here. v1 and v2 are eigenvectors of P
2 but are not eigenvectors of P . In lecture, we had

seen that P and P
2 would share eigenvectors. Well, they do. Indeed for P

2 there are many choices for the linearly
independent eigenvectors as the nullspace for P

2
− I has dimension 2. And one can find (complex) eigenvetors of P

2

corresponding to λ = 1 such that they are also complex eigenvectors corresponding to these 2 eigenvalues of P .
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But v3 = (0, 0, 1, 0, 0), v4 = (0, 0, 0, 1, 0) and v5 = (0, 0, 0, 0, 1) are eigenvectors of P 3 and
they are linearly independent on v1 and v2 and so they correspond to 3 more eigenvalues.
Thus we have that λ3

3 = 1 = λ3
4 = λ3

5. Thus possible values for λ3, λ4 and λ5 are
1, ei2π/3, ei4π/3.

But we know also that the sum of the eigenvalues of P is equal to the trace of P , which is
0. Thus the only possibility for all the λi’s is now: λ1 = 1, λ2 = −1, λ3 = 1, λ4 = ei2π/3

and λ5 = ei4π/3.
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