
18.06, Fall 2004, Problem Set 3 Solutions

1. (6 pts.)

(a) No. The set F is not closed under scalar multiplication. For example,







0
0
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
is in F but

−1
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
is not.

(b) No. For a counter-example, consider f(x) = x2+x; then f is in our set but 2f = 2x2+2x
is not.

(c) Yes. Note that the “vectors” of this space are 4× 2 matrices. If N1 and N2 are matrices
in F , and c is any scalar, then

M(N1 + N2) = MN1 + MN2 =


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0 0






+







0 0
0 0
0 0






=


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and

M(cN1) = cMN1 = c
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
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
=






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,

so N1 + N2 and cN1 are also in F .

2. This question is not being graded. The notion of rotation was a bit ambiguous. If you consider
a rotation by 0 to be the same as a rotation by 2π then this is not a vector space. Indeed,
you would have for example two vectors, rotation by 0 and by π, such that if you multiply
them by 2 you get the same vector.

3. (8 pts.) Each column of A is a linear combination of the columns of P , with coefficients
from the correspoding column of Q:

Ai =
p
∑

k=1

Qk,iPk

where Ai denotes the ith column of A, similarly for Pk, and as usual Qk,i denotes the entry
of Q in row k and column i. Now if v is a vector in C(A), it can be written as a linear
combination of the columns of A; say

v =
n
∑

i=1

ciAi

for some scalars ci. Substituting, we get

v =
n
∑

i=1

ci

(

p
∑

k=1

Qk,iPk

)
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=
n
∑

i=1

p
∑

k=1

ciQk,iPk

=
p
∑

k=1

(

n
∑

i=1

ciQk,i

)

Pk

The point is, we now have v written as a linear combination of the columns of P . Therefore,
we have shown that if v is in C(A), then v is in C(P ), and so C(A) ⊆ C(P ).

It need not be the case that C(A) = C(P ), though. Consider for example

A =







1 0
0 1
0 0






, P =







1 0 0
0 1 0
0 0 1






, Q =


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

1 0
0 1
0 0






.

Clearly C(A) 6= C(P ) in this case.

4. (18 pts.)

(a) Perform elimination on the first column with

E21 =











1 0 0 0
−2 1 0 0
0 0 1 0
0 0 0 1











, E31 =











1 0 0 0
0 1 0 0
−3 0 1 0
0 0 0 1











and E41 =






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

1 0 0 0
0 1 0 0
0 0 1 0
−5 0 0 1











to get










1 2 −2 3 0
0 0 1 1 0
0 0 1 1 −2
0 0 1 1 0











.

Now perform elimination on the third column using

E32 =











1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1











and E42 =











1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1











to get










1 2 −2 3 0
0 0 1 1 0
0 0 0 0 −2
0 0 0 0 0











.

(b) The pivot variables are x1, x3 and x5. The free variables are x2 and x4.
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(c) All that is required to get to reduced row echelon form is to add 2 times row 2 to row 1

(with E12 =











1 2 0 0
0 1 0 0
0 0 1 0
0 0 0 1











) and divide row 3 by -2 (with











1 0 0 0
0 1 0 0
0 0 −1

2
0

0 0 0 1











) to get











1 2 0 5 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0











.

(d) The first special solution is obtained by setting x2 = 1 and x4 = 0, from which we get

x =








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−2
1
0
0
0


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









. Setting x2 = 0 and x4 = 1 we get the other special solution, x =




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

−5
0
−1
1
0















.

(e) 3: there are 3 pivots.

(f) Note that, as long as the pivot rows and columns are included in a submatrix, row reduc-
tion on that submatrix will proceed exactly as it did for the full matrix. In particular, if
we take only the rows and columns of A containing pivots, the resulting submatrix will
have the r×r identity matrix as its reduced row echelon form. Therefore, this submatrix
of A will be invertible. In our particular case, we get the submatrix







1 −2 0
2 −3 0
3 −5 −2






.

5. (8pts.) The important realisation to make for this problem is that A is the product of your
MIT ID as a column vector with your MIT ID as a row vector:

A =
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






















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
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

[

a1 a2 a3 a4 a5 a6 a7 a8 a9

]

For a start, it makes the MATLAB code very simple!

(a) As for problem set 1, we’ll give the computation for MIT ID 987654321.

>> a=[9;8;7;6;5;4;3;2;1]
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a =

9

8

7

6

5

4

3

2

1

>> A=a*a’

A =

81 72 63 54 45 36 27 18 9

72 64 56 48 40 32 24 16 8

63 56 49 42 35 28 21 14 7

54 48 42 36 30 24 18 12 6

45 40 35 30 25 20 15 10 5

36 32 28 24 20 16 12 8 4

27 24 21 18 15 12 9 6 3

18 16 14 12 10 8 6 4 2

9 8 7 6 5 4 3 2 1

>> B=A+A^2+A^3

B =

Columns 1 through 5

6602391 5868792 5135193 4401594 3667995

5868792 5216704 4564616 3912528 3260440

5135193 4564616 3994039 3423462 2852885

4401594 3912528 3423462 2934396 2445330

3667995 3260440 2852885 2445330 2037775

2934396 2608352 2282308 1956264 1630220

2200797 1956264 1711731 1467198 1222665

1467198 1304176 1141154 978132 815110

733599 652088 570577 489066 407555

Columns 6 through 9
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2934396 2200797 1467198 733599

2608352 1956264 1304176 652088

2282308 1711731 1141154 570577

1956264 1467198 978132 489066

1630220 1222665 815110 407555

1304176 978132 652088 326044

978132 733599 489066 244533

652088 489066 326044 163022

326044 244533 163022 81511

>> rank(B)

ans =

1

(b) With the expression for A above, we can calculate B more explicitly. As in the MATLAB
computation above, let us denote by a the column vector with entries the digits of your
MIT ID. Then

B = A + A2 + A3

= aa
T + aa

T
aa

T + aa
T
aa

T
aa

T

= aa
T + a‖a‖2

a
T + a‖a‖4

a
T

= (1 + ‖a‖2 + ‖a‖4)aaT

Since the expression in parentheses is a scalar, the rank of B equals the rank of aa
T .

Now, each column of aa
T is just a multiple of a, so the rank of aa

T , and therefore B, is
1 (unless you happen to have the MIT ID 000000000, in which case the rank is 0).
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