Your name is:	

Please circle your recitation:

1)	M2	2-131	PO. Persson	2-088	2-1194	persson
2)	M2	2-132	I. Pavlovsky	2-487	3-4083	igorvp
3)	М3	2-131	I. Pavlovsky	2-487	3-4083	igorvp
4)	T10	2-132	W. Luo	2-492	3-4093	luowei
5)	T10	2-131	C. Boulet	2-333	3-7826	cilanne
6)	T11	2-131	C. Boulet	2-333	3-7826	cilanne
7)	T11	2-132	X. Wang	2-244	8-8164	xwang
8)	T12	2-132	P. Clifford	2-489	3-4086	peter
9)	T1	2-132	X. Wang	2-244	8-8164	xwang
10)	T1	2-131	P. Clifford	2-489	3-4086	peter
11)	T2	2-132	X. Wang	2-244	8-8164	xwang

1 (40 pts.) (a) Find the projection matrix P_C onto the column space of A (after looking closely at the matrix!)

$$A = \left[\begin{array}{rrr} 3 & 3 & 6 \\ 1 & 1 & 2 \end{array} \right]$$

- (b) Find the 3 by 3 projection matrix P_R onto the row space of A. What is the closest vector in the row space to the vector $\boldsymbol{b} = (1,0,0)$?
- (c) Multiply P_CA and then P_CAP_R . Your answers should be a little surprising—can you explain?
- (d) Find a basis for the subspace of all vectors orthogonal to the row space of A.

2 (30 pts.) (a) Choose c and the last column of Q so that you have an orthogonal matrix:

$$Q = c \begin{bmatrix} 1 & -1 & -1 & \mathbf{x} \\ -1 & 1 & -1 & \mathbf{x} \\ -1 & -1 & -1 & \mathbf{x} \\ -1 & -1 & 1 & \mathbf{x} \end{bmatrix}$$

- (b) Project $\boldsymbol{b}=(1,1,1,1)$ onto the first column of Q. Then project \boldsymbol{b} onto the plane spanned by the first two columns.
- (c) Suppose the last column of the 4 by 4 matrix (where the x's are) was changed to (1,1,1,1). Call this new matrix A. If Gram-Schmidt is applied to the 4 columns of A, what would be the 4 outputs $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3, \boldsymbol{q}_4$? (Don't do a lot of calculations...please.)

- **3 (30 pts.)** (a) If you multiply all n! permutations together into a single P, is the product odd or even? (Answer might depend on n.)
 - (b) If you know that $\det A = 6$, what is the determinant of B?

$$\det A = \begin{vmatrix} \operatorname{row} 1 \\ \operatorname{row} 2 \\ \operatorname{row} 3 \end{vmatrix} = 6 \qquad \det B = \begin{vmatrix} \operatorname{row} 3 + \operatorname{row} 2 + \operatorname{row} 1 \\ \operatorname{row} 2 + \operatorname{row} 1 \\ \operatorname{row} 1 \end{vmatrix} = ?$$

- (c) Prove $\det A = 0$ for the 5 by 5 all-ones matrix (all $a_{ij} = 1$) in **two ways**:
 - (1) Using Properties 1–10 of determinants
 - (2) Using the "big formula" = sum of 120 terms.

