
18.06 Professor Strang/Ingerman Final Exam December 17, 2002

Your name is:

Please circle your recitation:

1) M2 2-131 P.-O. Persson 2-088 2-1194 persson

2) M2 2-132 I. Pavlovsky 2-487 3-4083 igorvp

3) M3 2-131 I. Pavlovsky 2-487 3-4083 igorvp

4) T10 2-132 W. Luo 2-492 3-4093 luowei

5) T10 2-131 C. Boulet 2-333 3-7826 cilanne

6) T11 2-131 C. Boulet 2-333 3-7826 cilanne

7) T11 2-132 X. Wang 2-244 8-8164 xwang

8) T12 2-132 P. Clifford 2-489 3-4086 peter

9) T1 2-132 X. Wang 2-244 8-8164 xwang

10) T1 2-131 P. Clifford 2-489 3-4086 peter

11) T2 2-132 X. Wang 2-244 8-8164 xwang

The ten questions are worth 10 points each.

Thank you for taking 18.06!



1 The 4 by 6 matrix A has all 2’s below the diagonal and elsewhere all 1’s:

A =


1 1 1 1 1 1

2 1 1 1 1 1

2 2 1 1 1 1

2 2 2 1 1 1


(a) By elimination factor A into L (4 by 4) times U (4 by 6).

(b) Find the rank of A and a basis for its nullspace (the special solutions would be

good).
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2 Suppose you know that the 3 by 4 matrix A has the vector s = (2, 3, 1, 0) as a basis

for its nullspace.

(a) What is the rank of A and the complete solution to Ax = 0?

(b) What is the exact row reduced echelon form R of A?
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3 The following matrix is a projection matrix :

P =
1

21


1 2 −4

2 4 −8

−4 −8 16

 .

(a) What subspace does P project onto?

(b) What is the distance from that subspace to b = (1, 1, 1)?

(c) What are the three eigenvalues of P? Is P diagonalizable?
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4 (a) Suppose the product of A and B is the zero matrix: AB = 0. Then the (1)

space of A contains the (2) space of B. Also the (3) space of B contains

the (4) space of A. Those blank words are

(1) (2) (3) (4)

(b) Suppose that matrix A is 5 by 7 with rank r, and B is 7 by 9 of rank s. What

are the dimensions of spaces (1) and (2) ? From the fact that space (1) contains

space (2) , what do you learn about r + s?
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5 Suppose the 4 by 2 matrix Q has orthonormal columns.

(a) Find the least squares solution x̂ to Qx = b.

(b) Explain why QQT is not positive definite.

(c) What are the (nonzero) singular values of Q, and why?
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6 Let S be the subspace of R3 spanned by


1

2

2

 and


5

4

−2

.

(a) Find an orthonormal basis q1, q2 for S by Gram-Schmidt.

(b) Write down the 3 by 3 matrix P which projects vectors perpendicularly onto S.

(c) Show how the properties of P (what are they?) lead to the conclusion that Pb

is orthogonal to b − Pb.
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7 (a) If v 1, v 2, v 3 form a basis for R3 then the matrix with those three columns is

.

(b) If v 1, v 2, v 3, v 4 span R3, give all possible ranks for the matrix with those four

columns. .

(c) If q1, q2, q3 form an orthonormal basis for R3, and T is the transformation that

projects every vector v onto the plane of q1 and q2, what is the matrix for T in

this basis? Explain.
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8 Suppose the n by n matrix An has 3’s along its main diagonal and 2’s along the

diagonal below and the (1, n) position:

A4 =


3 0 0 2

2 3 0 0

0 2 3 0

0 0 2 3

 .

Find by cofactors of row 1 or otherwise the determinant of A4 and then the determi-

nant of An for n > 4.
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9 There are six 3 by 3 permutation matrices P .

(a) What numbers can be the determinant of P? What numbers can be pivots?

(b) What numbers can be the trace of P? What four numbers can be eigenvalues

of P?
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10 Suppose A is a 4 by 4 upper triangular matrix with 1, 2, 3, 4 on its main diagonal.

(You could put all 1’s above the diagonal.)

(a) For A − 3I, which columns have pivots? Which components of the eigenvector

x 3 (the special solution in the nullspace) are definitely zero?

(b) Using part (a), show that the eigenvector matrix S is also upper triangular.
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