Your name is:

Please circle your recitation:

1)	M2	2-131	Holm	2-181	3-3665	tsh@math
2)	M2	2-132	Dumitriu	2-333	3-7826	dumitriu@math
3)	M3	2-131	Holm	2-181	3-3665	tsh@math
4)	T10	2-132	Ardila	2-333	3-7826	fardila@math
5)	T10	2-131	Czyz	2-342	3-7578	czyz@math
6)	T11	2-131	Bauer	2-229	3-1589	bauer@math
7)	T11	2-132	Ardila	2-333	3-7826	fardila@math
8)	T12	2-132	Czyz	2-342	3-7578	czyz@math
9)	T12	2-131	Bauer	2-229	3-1589	bauer@math
10)	T1	2-132	Ingerman	2-372	3-4344	ingerman@math
11)	T1	2-131	Nave	2-251	3-4097	nave@math
12)	T2	2-132	Ingerman	2-372	3-4344	ingerman@math
13)	T2	1-150	Nave	2-251	3-4097	nave@math

1 (30 pts.) (a) Find the diagonalization $A = S\Lambda S^{-1}$ of

$$A = \left[\begin{array}{ccc} 0.5 & 3 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

- (b) What is the limit of A^k as $k \to \infty$?
- (c) Suppose B^k approaches I (the 2 by 2 identity) as $k \to \infty$. How do you know that B = I? Explain using eigenvalues and Jordan forms like

$$J = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right].$$

- 2 (40 pts.) (a) Suppose the diagonalization $A = S\Lambda S^{-1}$ is exactly the same as the singular value decomposition $A = U\Sigma V^{\mathrm{T}}$ (so S = U = V and $\Lambda = \Sigma$). What information does this give about A? Can it be singular?
 - (b) What are the eigenvalues of a 3 by 3 Markov projection matrix that has trace 2? Create one matrix that has these properties.
 - (c) Here is a matrix with orthogonal columns. Find its SVD $A = U\Sigma V^{\mathrm{T}}$.

$$A = \left[\begin{array}{cc} 3 & 0 \\ 4 & 0 \\ 0 & 7 \end{array} \right]$$

- (d) Suppose A is similar to a 3 by 3 matrix B that has eigenvalues 1, 1, 2. What can you say about
 - 1. the eigenvalues of A
 - 2. diagonalizability of A
 - 3. symmetry of A
 - 4. positive definiteness of A

In each of (2) (3) and (4) decide if A can't have or might have or must have this property.

3 (30 pts.) (a) Find the eigenvalues of the matrix (and fill in the blanks)

$$A = \left[\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right].$$

These eigenvalues are all ______ because this matrix A is _____

- (b) If the eigenvectors are x_1 , x_2 , x_3 (not required to compute them) describe the general solution to the differential equation $\frac{du}{dt} = Au$.
- (c) At what time T is the solution u(T) guaranteed to equal its initial value u(0)?