Math 18.06 Exam 2 Solutions

- 1 (36 pts.) (a) $q_4^* = v (q_1^T v)q_1 (q_2^T v)q_2 (q_3^T v)q_3$ $q_4 = \frac{q_4^*}{\|q_4^*\|}$
 - (b) The nullspace of Q is just the zero vector (Q has a pivot in every column). The nullspace of Q^T has dimension one and consists of all scalar multiples of q_4 (because we know q_4 is orthogonal to q_1, q_2 and q_3).

The nullspace of $Q^TQ = I$ is just the zero vector. The nullspace of QQ^T again has dimension one and is all scalar multiples of q_4 .

(c) $Q^T Q \bar{x} = Q^T b$ is the same as $\bar{x} = Q^T b$, so $\bar{x} = \begin{bmatrix} q_1^T (q_1 + 2q_2 + 3q_3 + 4q_4) \\ q_2^T (q_1 + 2q_2 + 3q_3 + 4q_4) \\ q_3^T (q_1 + 2q_2 + 3q_3 + 4q_4) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ The projection $p = Q \bar{x} = q_1 + 2q_2 + 3q_3$

2 (24 pts.) (a)
$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} x = \begin{bmatrix} 3 \\ 5 \\ K \end{bmatrix}$$

Ax = b has an exact solution when b is in the column space. This happens when K = 7.

(b) $\bar{x}=0$ is the least squares solution when b is in the nullspace of A^T For $\begin{bmatrix} 3 \\ 5 \\ K \end{bmatrix}$ to be in the nullspace of A^T , K would have to be -8 and $\frac{-21}{4}$, which is impossible.

3 (40 pts.)

(a) The determinant will have the cofactor of a_{14} added to it. In the second part of the question, the determinant will double.

(b) We know $P^2 = P$, so $(det(P))^2 = det(P)$, so det(P) = 0 or 1.

(c) Using cofactors by the first row, $det(C)=(-b)(-b)(a^2-b^2)+(-a)(a)(a^2-b^2)=-(a^2-b^2)^2$

(d) 24 terms using $a_{11} + 24$ terms using $a_{22} - 6$ terms using both = 42 total