Your name is:

Please circle your recitation:

1)	M2	2-131	Holm	2-181	3-3665	tsh@math
2)	M2	2-132	Dumitriu	2-333	3-7826	dumitriu@math
3)	M3	2-131	Holm	2-181	3-3665	tsh@math
4)	T10	2-132	Ardila	2-333	3-7826	fardila@math
5)	T10	2-131	Czyz	2-342	3-7578	czyz@math
6)	T11	2-131	Bauer	2-229	3-1589	bauer@math
7)	T11	2-132	Ardila	2-333	3-7826	fardila@math
8)	T12	2-132	Czyz	2-342	3-7578	czyz@math
9)	T12	2-131	Bauer	2-229	3-1589	bauer@math
10)	T1	2-132	${\bf Ingerman}$	2-372	3-4344	ingerman@math
11)	T1	2-131	Nave	2-251	3-4097	nave@math
12)	T2	2-132	${\bf Ingerman}$	2-372	3-4344	ingerman@math
13)	T2	1-150	Nave	2-251	3-4097	nave@math

- 1 (36 pts.) Suppose Q is a 4 by 3 matrix with orthonormal columns q_1, q_2, q_3 .
 - (a) Starting from a vector v (not in the column space of Q), give a formula for the fourth orthonormal vector q_4 that is produced by Gram-Schmidt from q_1, q_2, q_3, v .
 - (b) Describe the nullspace of Q (the same 4 by 3 matrix) and the nullspace of Q^{T} . (You can answer even if you didn't find the particular formula for q_4 in part a.) Describe also the nullspaces of $Q^{\mathrm{T}}Q$ and QQ^{T}
 - (c) Suppose $b=q_1+2q_2+3q_3+4q_4$. Find the least squares solution \bar{x} to Qx=b. What is the projection p of this b onto the column space of Q?

- 2 (24 pts.) (a) Fitting the best (least squares) straight line through the points (t,b) = (2,3), (3,5), and (4,K) is the same as solving what system of equations Ax = b by least squares? Is there any value of K for which this system Ax = b has an exact solution?
 - (b) For general A and B, under what condition does the equation Ax = b have $\bar{x} = 0$ as its least squares solution? In the example of part (a), prove that there is or there isn't a value of K so that $\bar{x} = 0$ is the least squares solution.

- 3 (40 pts.) (a) Suppose A is a 4 by 4 matrix. If you add 1 to the entry a_{14} in the northeast corner, how much will the determinant change?
 - (b) Explain why the determinant of every projection matrix is either 0 or 1.
 - (c) Find the determinant of the "circulant matrix" $\,$

$$A = \left[egin{array}{cccc} 0 & b & 0 & a \ a & 0 & b & 0 \ 0 & a & 0 & b \ b & 0 & a & 0 \end{array}
ight].$$