Final Examination in Linear Algebra: 18.06

Dec 21, 2000

9:00 - 12:00

Professor Strang

Your name is:

Grading

 $2\\3\\4\\5\\6$

8

Please circle your recitation:

1)	M2	2-131	Holm	2-181	3-3665	tsh@math
2)	M2	2-132	Dumitriu	2-333	3-7826	dumitriu@math
3)	M3	2-131	Holm	2-181	3-3665	tsh@math
4)	T10	2-132	Ardila	2-333	3-7826	fardila@math
5)	T10	2-131	Czyz	2-342	3-7578	czyz@math
6)	T11	2-131	Bauer	2-229	3-1589	bauer@math
7)	T11	2-132	Ardila	2-333	3-7826	fardila@math
8)	T12	2-132	Czyz	2-342	3-7578	czyz@math
9)	T12	2-131	Bauer	2-229	3-1589	bauer@math
10)	T1	2-132	Ingerman	2-372	3-4344	ingerman@math
11)	T1	2-131	Nave	2-251	3-4097	nave@math
12)	T2	2-132	Ingerman	2-372	3-4344	ingerman@math
13)	T2	1-150	Nave	2-251	3-4097	nave@math

Answer all 8 questions on these pages (25 parts, 4 points each). This is a closed book exam. Calculators are not needed in any way and therefore not allowed (to be fair to all). *Grades are known only to your recitation instructor*. Best wishes for the holidays and thank you for taking 18.06. GS

- 1 (a) Explain why every eigenvector of A is either in the column space C(A) or the nullspace N(A) (or explain why this is false).
 - (b) From $A = S\Lambda S^{-1}$ find the eigenvalue matrix and the eigenvector matrix for $A^{\rm T}$. How are the eigenvalues of A and $A^{\rm T}$ related?
 - (c) Suppose Ax = 0 and $A^{T}y = 2y$. Deduce that x is orthogonal to y. You may prove this directly or use the subspace ideas in (a) or the eigenvector matrices in (b). Write a clear answer.

- 2 (a) Suppose A is a symmetric matrix. If you first subtract 3 times row 1 from row 3, and after that you subtract 3 times column 1 from column 3, is the resulting matrix B still symmetric? Yes or not necessarily, with a reason.
 - (b) Create a symmetric positive definite matrix (but not diagonal) with eigenvalues 1, 2, 4.
 - (c) Create a nonsymmetric matrix (if possible) with those eigenvalues. Create a rank-one matrix (if possible) with those eigenvalues.

Gram-Schmidt is A = QR (start from rectangular A with independent columns, produce Q with orthonormal columns and upper triangular R). The problem is to produce the same Q and R from ordinary (symmetric) elimination on $A^{T}A$ which gives

$$A^{\mathrm{T}}A = LDL^{\mathrm{T}} = R^{\mathrm{T}}R$$
 (with $R = \sqrt{D}L^{\mathrm{T}}$).

- (a) How do you know that the pivots are positive, so \sqrt{D} gives real numbers?
- (b) From $A^{T}A = R^{T}R$ show that the matrix $Q = AR^{-1}$ has orthonormal columns (what is the test?). Then we have A = QR.
- (c) Apply Gram-Schmidt to these vectors a_1 and a_2 , producing q_1 and q_2 . Write your result as QR:

$$a_1 = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 $a_2 = \begin{bmatrix} \sin \theta \\ 0 \end{bmatrix}$.

4 The Fibonacci numbers $F_0, F_1, F_2, F_3, F_4, \ldots$ are $0, 1, 1, 2, 3, \ldots$ and they obey the rule $F_{k+2} = F_{k+1} + F_k$. In matrix form this is

$$\begin{bmatrix} F_{k+2} \\ F_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix} \text{ or } u_{k+1} = Au_k.$$

The eigenvalues of this particular matrix A will be called a and b.

- (a) What quadratic equation connected with A has the solutions (the roots) a and b?
- (b) Find a matrix that has the eigenvalues a^2 and b^2 . What quadratic equation has the solutions a^2 and b^2 ?
- (c) If you directly compute A^4 you get

$$A^4 = \left[\begin{array}{cc} 5 & 3 \\ 3 & 2 \end{array} \right].$$

Make a guess at the entries of A^k , involving Fibonacci numbers. Then multiply by A to show why your guess is correct. What is the determinant of A^k (not a hard question!)?

5 Suppose A is 3 by 4 and its reduced row echelon form is R:

$$R = \left[\begin{array}{rrrr} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

- (a) The four subspaces associated with the original A are N(A), C(A), $N(A^{T})$, and $C(A^{T})$. Give the <u>dimension</u> of each subspace and if possible give a <u>basis</u>.
- (b) Find the complete solution (when is there a solution?) to the equations

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}.$$

(c) Find a matrix A with <u>no zero entries</u> (if possible) whose reduced row echelon form is this same R.

- Suppose A is a 3 by 3 matrix and you know the three outputs $y_1 = Ax_1$ and $y_2 = Ax_2$ and $y_3 = Ax_3$ from three independent input vectors x_1, x_2, x_3 .
 - (a) Find the matrix A using this hint: Put the vectors x_1, x_2, x_3 into the columns of a matrix X and multiply AX. Why did I require the x's to be independent?
 - (b) Under what condition on A will the outputs y_1, y_2, y_3 be a basis for \mathbb{R}^3 ? Explain your answer.
 - (c) If x_1, x_2, x_3 is the input basis and y_1, y_2, y_3 is the output basis, what is the matrix M that represents this same linear transformation (defined by $T(x_1) = y_1$, $T(x_2) = y_2$, $T(x_3) = y_3$)?

7 (a) Find the eigenvalues of the antidiagonal matrix

$$A = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right].$$

- (b) Find as many eigenvectors as possible, with the best possible properties. Are there 4 independent eigenvectors? Are there 4 orthonormal eigenvectors?
- (c) What is the rank of A + 2I? What is the determinant of A + 2I?

- 8 (a) If $U\Sigma V^{\mathrm{T}}$ is the singular value decomposition of A (m by n) give a formula for the best least squares solution \bar{x} to Ax = b. (Simplify your formula as much as possible).
 - (b) Write down the equations for the straight line b = C + Dt to go through all four of the points (t_1, b_1) , (t_2, b_2) , (t_3, b_3) , (t_4, b_4) . Those four points lie on a line provided the vector $b = (b_1, b_2, b_3, b_4)$ lies in
 - (c) Suppose S is the subspace spanned by the columns of some m by n matrix A. Give the formula for the projection matrix P that projects each vector in R^m onto the subspace S. Explain where this formula comes from and any condition on A for it to be correct.
 - (d) Suppose x and y are both in the row space of a matrix A, and Ax = Ay. Show that x y is in the nullspace of A. Then prove that x = y.