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Linear Algebra and Music 
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1.  Introduction 
 

In this project you will see how to use linear algebra to understand music and other types 

of sound.   Specifically, you will see that a given sound can be viewed as elements of a 

linear space and its coordinates relative to a carefully chosen orthonormal basis will 

explain many different properties of the sound.  After completing this project, you will be 

able to answer the following questions.  

 

• What is a good basis for the space of all sounds? 

• What are musical notes? 

• How do notes make up a song? 

• Why do some notes sound pleasing when played together, while others do not? 

• Why do pianos and flutes sound different even when playing the same note? 

 

 

2. Why Sines and Cosines? 
 

A basis for a linear space is a fundamental set of building blocks that can be used to make 

any element in the space.  To analyze sound and music, we need to find a set of basic 

sounds that can be combined to make all other sounds.  To do this, we first look at how 

sounds travel through the air and what your ear does when it receives that sound. 

 

All sounds are produced by vibrations which cause variations in air pressure to propagate.  

If you hold your fingers against your throat when you speak, you can feel your larynx 

vibrate.  When a bow is pulled across a flute string, the string vibrates.  You have also 

probably felt these vibrations at a concert or when standing next to a loud speaker.   

 

These variations in air pressure travel from the source of the sound to your ear where they 

are processed and then sent to your brain.  How the ear processes sound is not completely 

understood, but we do know the basic story. The variations in air pressure cause your 

eardrums to vibrate which causes some liquid in your inner ear to slosh around. This 

liquid surrounds a hair-lined membrane and is enclosed in a tapered chamber.  Different 

variations in air pressure cause differently shaped waves to propagate through the liquid.  

Because the chamber containing the membrane is tapered, some waves travel further than 

others along the membrane and stimulate different hairs. These hairs are connected to 

neurons that transmit the information to your brain. 

 

A crude model of what’s happening to a point on the membrane is given by the 

differential equation yk
dt

yd
−=

2

2

 where t is time and y is the distance of that point on the 
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membrane from its equilibrium solution.  The solutions to this differential equation give 

us the basic building blocks to understand all sounds.  

 

Problem:  

2a. Verify that ( )tkcos  and ( )tksin  are solutions to the differential 

equation yk
dt

yd
−=

2

2

. 

 

In your Differential Equations course, you will see that every solution to the differential 

equation above is a linear combination of ( )tkcos  and ( )tksin .   A proof is also 

sketched in 4.2 #58 in your text. In the language of linear algebra, they form a basis for 

the space of solutions to the differential equation. 

 

 

Because the solutions to the differential equation are sine and cosine, you will use sine 

waves and cosine waves will to analyze sounds and music in the rest of this lab. 

 

 

3. How the shape of the graph affects what you hear. 
 

To start, you will graph and then listen to various sine waves.  You will see the 

differences in their graphs and then hear the differences when you listen to them in 

MATLAB. 

 

First, you are going to use MATLAB to graph and then to play two different sounds.  

You will listen to two seconds of each of the functions )4402sin( t⋅π  and )8802sin( t⋅π .  

The first function represents a vibration at a rate of 440 cycles per second and the second 

at 880 cycles per second.
2
 

 

Here is how to use MATLAB to plot the two graphs in the same window: 

 
>> % First we set the domain.  Here it is [0,2] with 16000 

>> % sample points. 

>> t = linspace(0,2 ,16000)’; %Note the ‘ at the end 

>> % 

>> % Now define the two functions. 

>> sound1 = sin(2*pi*440*t); %define the first function  

>> sound2 = sin(2*pi*880*t); %define the second function 

>> % 

>> % Plot the two functions. Note we only plot the first  

>> % 1/100th of a second. 

>> subplot(2,1,1); plot(t,sound1); axis([0,.01,-1, 1]) 

>> subplot(2,1,2); plot(t,sound2); axis([0,.01,-1, 1]) 

                                                 
2
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Here is how to use MATLAB to listen to )4402sin( t⋅π : 

 
>> soundsc(sound1,8000) %The 8000 is needed to tell the  

>> %soundsc command the sampling frequency.  Here there are  

>> % 8000samples per second. 

 

Problems 

 

3a. Plot )4402sin( t⋅π  and )8802sin( t⋅π  on the interval [0, .01] on two separate graphs in 

the same window.  What differences do you see between the two graphs?  Include the 

two graphs in your write up. 

 

3b. Listen to two seconds of )4402sin( t⋅π  and to two seconds of )8802sin( t⋅π .  What is 

the difference between the two sounds you hear? 

 

3c. Plot )4402sin( t⋅π  and )4402sin(25. t⋅π  on the interval [0, .01] on two separate 

graphs in the same window.  What differences do you see between the two graphs?  

Include the two graphs in your write up. 

 

3d. Listen to two seconds of )4402sin( t⋅π  and to two seconds of )4402sin(25. t⋅π .  What 

is the difference between the two sounds you hear?  Use the command >>sound instead 

of the command >>soundsc for this problem. 

 

3e. Plot )4402sin( t⋅π  + )6602cos( t⋅π  and )4402sin( t⋅π  + )6602sin( t⋅π  on the interval 

[0, .01].  What differences do you see between the two graphs?  Include the two graphs in 

your write up.  

 

3f. Listen to two seconds of )4402sin( t⋅π  + )6602cos( t⋅π  and to two seconds of 

)4402sin( t⋅π  + )6602sin( t⋅π .  What is the difference (if any) between the two sounds 

you hear?  Your result here will be important later in this lab.  Be careful when you 

answer this. 

 

3g. A more realistic function to model musical notes is )4402sin(5 te t ⋅− π .  (This is the 

solution to another differential equation that models the ear better than the one above.) 

 

Plot )4402sin( t⋅π  and )4402sin(5 te t ⋅− π  on the interval [0, .5] on two separate graphs in 

the same window.  What differences do you see between the two graphs?  Include the 

two graphs in your write up. 

(Hint: >> note1 = exp(-5*t).*sin(2*pi*440*t);) 
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3h. Listen to one-half second of )4402sin( t⋅π  and to one-half second 

of )4402sin(5 te t ⋅− π .  What is the difference between the two sounds you hear?  Explain 

why the second function sounds more realistic.  What role does t
e

5−  play?  You will need 

to redefine t for this problem. 

 

 

4. Songs 
 

A song is a sequence of notes.  In this section, you will use MATLAB to play a song.  

Use the following table of frequencies to play the famous children’s song given by the 

sequence of notes B A G A B B B.  

 

Note Frequency 

       G 392 

       A 440 

B 494 

 

 

 

 

 

 

 

 

 

 

 

Problem  

4a. Show the MATLAB commands you used to play the song.  Do you recognize it? Be 

sure to use the more realistic notes you generated in 3g above. 

 

 

5. Consonance and Dissonance 
 

Most music you hear does not consist of just one frequency played at a time.  Instead, 

multiple frequencies enter your ears simultaneously.  We can use sine waves to explain 

why some combinations of frequencies are more pleasing than others.   

 

Translating music to math, two notes are said to be an octave apart if the frequency of the 

higher pitched note is twice the frequency of the lower pitched note.  For example, the 

two notes represented by )4402sin(2 te t ⋅− π  and )8802sin(2 te t ⋅− π  are an octave apart. 

More generally, anytime the ratio of the frequencies is a ratio of two small integers, the 

notes combine to make a pleasant sound.  In the language of music, they are said to be 

consonant. The ratio of the frequencies of the notes represented by )4402sin(2 te t ⋅− π  and 

MATLAB trick:  There is an easy way to make 

your sequence of notes.  Suppose you have 

already defined the notes A and B.  To play the 

song A B B A, you would use  
>> soundsc([A B B A], 8000); 
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)6602sin(2 te t ⋅− π  is 3:2, so these notes are consonant.  The notes )4402sin(2 te t ⋅− π  and 

)4502sin(2 te t ⋅− π are dissonant (not pleasing to the ear) because the ratio of the 

frequencies is 45:44.  In the problems below, you will graph and listen to various 

combinations of these notes.  Make each note last for two seconds. 

 

Problems 

5a. Plot )4402sin(2 te t ⋅− π  and )8802sin(2 te t ⋅− π  on the interval [0, .004] on two separate 

graphs in the same window.  What differences do you see between the two graphs?  

Include the two graphs in your write up.   

 

5b. Do the following: 

 1) Listen to two seconds of )4402sin(2 te t ⋅− π ,  

 2) Listen to two seconds of )8802sin(2 te t ⋅− π  

 3) Listen to two seconds of )8802sin()4402sin( 22 tete tt ⋅+⋅ −− ππ  

Show the code you used to generate these three sounds. 

 

5c. The note B has a frequency of 494 Hertz.  Find a higher pitched note where the ratio 

of frequencies between your note and B is 3:2.  Graph the two functions on a suitably 

small interval.  Listen to two seconds of the sum of your note and B.  Show the code you 

used to generate the sound. 

 

5d. Play the notes with frequencies 494 Hertz and 504 Hertz simultaneously.  Is the 

sound consonant or dissonant?  Explain why.  Show the code you used to generate the 

sound. 

 

 

 

 

 

6. A Brief Hacking Interlude
3
 

 

Ultimately, you can build on the ideas developed above to answer the following question: 

Why does a piano sound different than a flute even when they are playing the same note?  

Before you can answer this question, you first need to be able to take a given sound and 

retrieve its coordinates relative to a carefully chosen basis.  To learn how to do this, 

imagine you are in the following situation:  You cannot remember the three digit code to 

your answering machine, but you have a recording of a phone call where you 

successfully accessed it.  How do you obtain the code from the sounds? 

 

Before you can decode your recording, you first need to understand how the digits on a 

telephone are coded as sounds.  The diagram
4
 below explains how it works: 

                                                 
3
 As I am sure you will figure out, the material in this section could be put to nefarious uses.  As you 

continue your math education, you will find how powerful math really is.  Be sure to use your power for 

good, and not evil. 
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          1      2            3     :  697 Hz 

 

           4      5      6     :  770 Hz 

                                            

           7      8     9     :   852 Hz 

 

           *      0            #     :  941 Hz 

        ----             ----        ----   

        1209         1336     1477  Hz 

 

Every button is the combination of two pure tones; one corresponding to its row, and one 

to its column.  For example, when you press 4, a tone of 1209 Hz and a tone of 770 Hz 

are generated simultaneously.  Here is how to get MATLAB generate the same sound for 

one-half of a second. 

 
>> t = linspace(0,.5,4000)’;  

>> four = sin(2*pi*1209*t) + sin(2*pi*770*t); 

>> soundsc(four,8000) 

 

In the language of linear algebra, every number’s sound can be thought of as an element 

of the linear space with basis that has  

 










)14772sin(),13362sin(),12092sin(

),9412sin(),8522sin(),7702sin(),6972sin(

ttt

tttt

πππ

ππππ
. To recover your  

 

password, you need a way to take the sound and generate its coordinates relative to this 

basis.  If you could define an inner product on the space so that the basis was orthonormal 

with respect to this inner product, then you could use the following fact:  

 

       

.in  any for  ,...,gThen   . of ...,, basis lorthonormaan Consider 111 VgffgffgVff nnn ><++>=<

 

In other words, given the sound g in V where nn fcfcfcg +++= ...2211  we know that 

,...,,, 2211 >=<>=< fgcfgc   To define the inner product, we use the continuous 

version of the idea of multiplying components and adding the products.  Unfortunately, 

the obvious integral makes the basis orthogonal, but not orthonormal.  To make sure each 

vector has length one, we need to scale the integral.  So, we define 

dttftgfg ∫=><
2

1

0
)()(4, . 

 

 

 

 

 

                                                                                                                                                 
4
 Original diagram from http://margo.student.utwente.nl/el/phone/dtmf.htm 
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Problems 

 6a.  Pick two distinct elements 1f  and 2f  from the basis above and show that 

0, 21 >=< ff .  (Hint:  Due to rounding errors, MATLAB might give you an answer that 

is almost, but not quite, zero.  Assume any number less than 1210−  is really 0 for this 

problem.) 

 

6b. Pick another element f  from the basis and show that 1, >=< ff  

 

Next you are going to generate a sound, and then recover the coefficients.  Then you will 

download a mystery tone and figure out which number it represents. 

 

Generate the sound for 4 as above.  Given the sound file, this is how you would 

determine that it is a 4: 

 
>> 4*trapz(t,sin(2*pi*697*t).*four) 

 

ans = 

 

 -2.7457e-015 

 

>> % Its not in the first row because the inner product is 

0. 

 

>> 4*trapz(t,sin(2*pi*770*t).*four) 

 

ans = 

 

    1.0000 

 

>> % It must be in the second row because the inner product 

is 1. 

 

 

 

 

MATLAB trick: Use the trapz command to 

integrate.  Here is how to calculate 

dttt∫ ⋅⋅
2

1

0
)8802cos()4402sin(4 ππ  

>> t = linspace(0,1/2,4000)’; 

>> f = sin(2*pi*440*t); 

>> g = cos(2*pi*880*t); 

>> 4*trapz(t,f.*g) 
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>> 4*trapz(t,sin(2*pi*1209*t).*four) 

 

ans = 

 

    1.0000 

 

>> %Bingo!  It's in the first column.  The number is in the 

second row, first column.  The number is 4. 

 

 

There is one subtlety that you need to understand before you can decode sounds.  In 

problem 3f above, you saw that the same sound could also be generated with cosines or a 

combination of sines and cosines.  In fact, instead of generating the number 4 with 

)12092sin()7702sin( tt ππ + , you could have also generated it with something like 

)12092cos()7702cos( tt ππ + , or even 

)12092cos()12092sin()7702cos()7702sin(
13
12

13
5

5
4

5
3 tttt ππππ +++ .  So, even though you 

can generate any sound with just sines, the sound you are trying to analyze may have 

cosines in it as well. 

 

Surprisingly, if you analyzed different pieces of the same sound by using two different 

time intervals, you could end up with different coefficients for the sines and cosines even 

if the duration of the two intervals is the same.
5
  The following theorem can be used to 

determine how much of a particular frequency is present in the sound: 

 

 Theorem:  Let )()( ktftg −= , and suppose >=<>=< )sin(,,)cos(, tfbtfa ωω ,  

        >=<′>=<′ )sin(,,)cos(, tgbtga ωω  where <f, g> is the inner product  

         used above.  Then ( ) ( )2222 '' baba +=+  

 

This tells us that wherever we start to analyze the signal, the quantity we want to look at 

for a particular frequency component is 22
ba + .   

 

Make sure you take this into account when solving the next two problems. 

 

 

 

 

 

 

 

 

 

                                                 
5
 This will happen if you start analyzing your sample at two different places, since the graph of cosine is 

just a shifted graph of sine. 
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6c. Download the sound mystery_number from  

http://www.dersmith.com/classes/Laney/math3e/lab.html  

and determine the number.   

 

Hint:  To download the sound and load it into MATLAB, do the following
6
: 

 

1. Go to the website http://www.dersmith.com/classes/Laney/math3e/lab.html 

2. Right click on the link mystery_number  

3. Select “Save Target As…” 

4. Click on My Computer 

5. Click on D:  

6. If there is not a directory called “temp”, click on the create new folder icon. 

7. Double click on the “temp” folder. 

8. Click the “Save” button. 

9. To tell MATLAB where to look,  type >> addpath 'D:\temp' 

10. To load the sound, type >>[number, Fs] = 

wavread(‘mystery_number’); 

11. To listen to the sound, type  >>soundsc(number, Fs); 

 

The variable number holds the sound you want to analyze.  The variable Fs is the 

sampling rate.  That is, Fs is the number of times per second the sound was sampled.  In 

this example, Fs is 8,000, which means that every th
8000

1
 of a second, the sound was 

recorded and saved.  (Hint:  For technical reasons, your coefficients will not be just 0 and 

1.  When trying to determine whether a frequency is present or not, use the fact that a 

coefficient close to 0 means the frequency is absent, and a coefficient around 
2
1  indicates 

that the frequency is present.) 

 

6d. You are now ready to recover the code to your answering machine.  Download the 

file stored at the link answering_machine_code at 

http://www.dersmth.com/classes/Laney/math3e/lab.html  and store it in a MATLAB 

variable called answering_machine.  By listening to the file, you can tell that your 

code is three digits.  What is the code to your answering machine? 

 

Hint: Each number is held for half a second and then there is a half-second pause before 

the next number.  The sound was sampled Fs times per second.  So, to recover the first 

and third half-second of sound, you would type something like this into MATLAB: 

 
>> t = linspace(0,.5,4000)'; 

>> firstNumber = answering_machine(1:.5*Fs); 

>> secondNumber = answering_machine(Fs+1:1.5*Fs); 

 

                                                 
6
 This assumes that you are using one of the computers in the lab at school. If you are using a Macintosh, 

your step 3 will be different.  If you are using a computer at home, save the file to c:\temp and modify step 

9 appropriately. 
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7. Musical Instruments 
 

You are now ready to answer the question “Why is it that even when playing the same 

note, flutes and pianos sound differently?”   You can answer this question with the tools 

you developed above.  

 

If a piano and a flute are both playing a note with frequency of 440 Hertz (A above 

middle C) then both are generating sound waves with that frequency.  They are also 

generating waves with frequencies 880 Hertz, 1320 Hertz, 1760 Hertz, etc.
 7

  Notice that 

these frequencies are all multiples of the 440 Hertz.  In other words, they are all the same 

note in different octaves and sound pleasant when played together, as you saw in section 

5 above.
8
  If the two instruments are both playing a note with frequency of 494 Hertz, 

then they are also producing sound waves with frequencies 988 Hertz, 1482 Hertz, 1976 

Hertz, etc.  

 

The difference between the two sounds is the relative strength of the different 

frequencies.  The piano has a loud fundamental and relatively soft harmonics, while the 

flute’s first harmonic is louder than its fundamental. 

 

In the language of linear algebra, if both of these instruments are playing the note with 

frequency 440 Hertz, the notes they play are both elements of the linear space with basis 

 

( )...)8802cos(),13202sin(),8802sin(),4402cos(),4402sin( ttttt ⋅⋅⋅⋅⋅ πππππ 9
.  

  

In other words, you can write both the piano’s note and the flute’s note as 

...)8802sin()8802sin()4402sin()4402cos( 2211 +⋅+⋅+⋅+⋅ tbtatbta ππππ   

Because you don’t know how much of the sound is in the sines and how much is in the 

cosines, let 
2

1

2

11 bac += ,
2

2

2

22 bac += , ….  to see how much of each frequency is 

present. You should expect the piano to have a large 1c  compared to ,..., 32 cc  and the 

flute to have 2c  larger than 1c . 

 

In the problems below, you will download a flute and a piano playing the same note.  By 

looking at the graph of the note, you will be able to determine the fundamental frequency, 

and then by building the appropriate basis, you will analyze the weights of the harmonics 

for both instruments. 

 

                                                 
7
 Actually, they are generating sounds at many other frequencies too, but primarily at the frequencies listed 

above.   
8
 In the language of music, the 440 Hertz note is called the fundamental, the 880 Hertz note is called the 

first harmonic, the 1320 Hertz is called the second harmonic, etc.  
9
 For practical purposes, we truncate the basis and orthogonally project the function onto the subspace.  

The ideas are still the same. 
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Problems 

 

7a. Go to the website http://www.dersmith.com/classes/Laney/math3e/lab.html and 

download the sound file piano. Load the sound into MATLAB using 
 >> [piano, FsPiano] = wavread('piano’); 

Listen to the sound and convince yourself that you are really listening to a piano.  Show 

the code you used to listen to the sound. 

 

7b. It is best to think of the piano sound as a function of time. In this exercise you will 

build the independent variable time and then graph the sound.   

 

i) Determine the duration of the sound piano.   

 Hint: FsPiano is the number of samples/second. 

        length(piano) is the number of samples. 

    Assign your answer to the variable pianoDuration 
 

ii) >>timePiano = linspace(0, pianoDuration,length(piano))’; 

 

iii) Use  
>> subplot(2,1,1); plot(timePiano,piano);  

>> legend('piano'); axis([0 pianoDuration -1 1]); 

to graph the piano sound. 

 

iv) At the same website, download flute listen to it, and produce a flute vs. time graph 

below the piano vs. time graph you did in iii).  Use   

>> subplot(2,1,2); to get MATLAB to generate your graph below the piano 

graph.  Include the two graphs in your write up. 

 

 

You now need to look more deeply into the piano graph to determine the fundamental 

frequency.  Before you start, close the window that has the graphs from the prevsious 

problem.  For this part, you will look at the graph from time t = .6 to t = .61 seconds.  To 

do this, you need to extract the appropriate samples from piano and from timePiano.  

The following table should make it clear how to do this.   

 

 

 

 

t (time) s (sample) 

0 1 

1 FsPiano 

 

Since the relation is linear, we get s = (FsPiano  – 1)t  + 1 

 

For t = .6, s  = (FsPiano-1)*.6 + 1 = 13230.4 

For t = .61, s  = (FsPiano-1)*.61 + 1 = 13450.89 
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Since neither of these is an integer, we need to round. 

 

Here is how to see the graph for this time interval:  

(Be sure to close any graphing window you have open before you type this.) 
>> startingSample = round((FsPiano-1)*.6 + 1); 

>> endingSample = round((FsPiano-1)*.61 + 1); 

>> timeSample = timePiano(startingSample:endingSample); 

>> pianoSample = piano(startingSample:endingSample); 

>> plot(timeSample, pianoSample) 

 

Note that the independent variable is the sample number here, not the time.  Your graph 

will start with sample number 13230 (which corresponds to time .6 sec) and ends with 

sample number 13451 (which is .61 sec). 

  

 

 

 

At first glance, the graph appears to be periodic, but if you look more closely, you will 

see that it is not quite.  There is enough of a periodic structure in here that we can 

determine the frequency. Looking closely at the graph, it appears that the first minimum 

occurs somewhere between times t = .6 and t = .603 and the next minimum occurs 

somewhere between times t = .603 and t = .605 and both are less than –.175.  We will use 

the MATLAB command for to look through the piano samples and print the values and 

sample numbers that are less than –.175.  There are more elegant ways to find the length 

of the cycle, but this is the most straightforward. 

 

 

 

 

 

 
 

 

 

>> for n = startingSample:endingSample 

if piano(n) < -.175  

disp(n);  %This displays the value of n (the sample number) 

disp(piano(n)); %This displays the value of piano at n 

end    %This closes the “if” statement above  

end    %This ends the for loop 

       13273 

 

   -0.1875 

 

       13274 

 

   -0.1953 

MATLAB trick:  To repeat something many times, 

use a for loop.  For example, to display the numbers 
222 10,...,2,1 , do the following: 

>> for i = 1:10 

disp(i^2); 
end 
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       13275 

 

   -0.1797 

 

       13323 

 

   -0.1797 

 

       13324 

 

   -0.1875 

 

       13325 

 

   -0.1797 

 

There is one minimum value of –.1953 at sample number 13274 and another one with a 

minimum value of –.1875 at sample number 13324.  Note that these samples are 50 units 

apart.  To determine the frequency,  

 
>> FsPiano/50 

 

ans = 

 

   441 

 

One of two things is happening here:  Either the piano is out of tune or we did not find 

the true length of the cycle because the true minimums happened at places that were not 

sampled.  Assume that the actual frequency is 440 Hz.   

 

Let t be any time interval that lasts for 440
1 th of a second and consider the basis 

( )...)8802cos(),13202sin(),8802sin(),4402cos(),4402sin( ttttt ⋅⋅⋅⋅⋅ πππππ  and inner 

product ∫ ⋅>=<
b

a
dtgfgf )(880,  where 

440
1=− ab . 

 

Problems 

 

7c. Convince yourself that the inner product makes the basis orthonormal by computing 

the following with t being the time interval lasting 440
1 th of a second starting at time .6 

sec. Use 50 samples in your time interval.   
>> t = linspace(.6,.6+1/440,50)’; 

 

i)  )4402sin(),4402sin( tt ⋅⋅ ππ  

ii)  )4402cos(),4402sin( tt ⋅⋅ ππ  
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iii)  )8802cos(),4402sin( tt ⋅⋅ ππ  

Compute the above quantities again starting at another time interval that lasts 440
1 th of a 

second.  You can pick any starting time you want. 

You are now ready to start extracting the components for the piano. 
>> startingSample =round((FsPiano-1)*.6+1); 

>> endingSample = startingSample + 49; 

>> timeSample = timePiano(startingSample:endingSample); 

>> pianoSample = piano(startingSample:endingSample); 

>> cosWeight = 

880*trapz(timeSample,pianoSample.*cos(2*pi*440*timeSample)); 

 

>> sinWeight = 

880*trapz(timeSample,pianoSample.*sin(2*pi*440*timeSample)); 

 

>> spec(1) = sqrt(cosWeight^2 + sinWeight^2); 

 

spec(1)now has the value for the weight of the 440 Hertz component. 

 

Use MATLAB to make the following assignments: 

 

 spec(2) = the 880 Hertz component 

 spec(3) = the 1320 Hertz component 

 spec(4) = the 1760 Hertz component 

 spec(5) = the 2200 Hertz component 

 spec(6) = the 2640 Hertz component 

 

You now have all of the components for the piano.  To see them graphed, first set up the 

horizontal axis: >> for n = 1:6; freq(n) = 440*n; end 

 

Use  
>> subplot(2,1,1);  

>> stem(freq,spec) 

>> axis([0 7*440 0 .15]) 

>> legend('piano') 

to see your graph.   

 

Fill in the bottom graph (subplot(2,1,2);) to see the graph of the relative weights 

of the frequencies for the flute sound. 

 

Include your code and the completed graph in your write up. 

 

 

8. Conclusion 
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In this lab, you have seen how to use Linear Algebra to understand sounds and music.  

The key idea was that by cleverly choosing a basis and defining the right inner product on 

it, you could easily break down the sounds in terms of their basis components. 

 

Problems 

 

8a. Answer each of the questions listed in the introduction with a sentence or two. 

 

 

 

 

 

 

 

 

 

 

 

9. An Annotated Bibliography 
 

There is much more to say about the relationship between math and music.  If you want 

to learn more, here are some places to get started. 

 

 

Benson, Dave,  Mathematics and Music 

 

This 500 page book can be found at http://www.math.uga.edu/~djb/html/math-

music.html.  This book covers many additional topics besides what is covered in this lab.  

I think the most interesting part is in the author’s discussion of how math can be used to 

design synthesizers. 

 

 

Hall, Rachel W. and Josic, Kresimir, The Mathematics of Musical Instruments 

 

This article can be found in the April, 2001 “The American Mathematical Monthly”.  It 

gives a nice discussion of how different instruments are able to produce the sounds they 

do.  A similar discussion is found in Dave Benson’s book. 

  

 

Lee, Edward A. and Varaiya, Pravin, The Structure and Interpretation of Signals and 

Systems 

 

The analysis done in sections 6 and 7 above is called Fourier Analysis and can be applied 

to a surprising number of different phenomena.  For example, Fourier himself first used 

this approach to understand heat flow in a metal rod.  In an Electrical Engineering 
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curriculum, this material is taught in a Signals and Systems course.  This book is an 

excellent introduction to these ideas and a whole lot of others.  Because you have taken 

this Linear Algebra course, you already have the math background necessary to 

understand this book. 

 

 

Petersen, Mark, Musical Analysis and Synthesis in MATLAB 

 

This paper was published in College Mathematics Journal Vol. 35, No. 5, November 

2004, p.396-401 and can also be downloaded from the first link at 

http://amath.colorado.edu/pub/matlab/music/.  In addition to the ideas discussed in this 

project, the author also discusses the mathematics of plucked string instruments and how 

these ideas can be used to produce human-like sounds.  The webpage itself has links to 

some interesting MATLAB programs and different sounds for you to analyze.  This is 

where I got the sounds for the flute and the piano. 

 

 

 

 

Perdue, Katy, Digital Signal Processing for Music 

 

This webpage can be found at http://www.cs.hmc.edu/~kperdue/MusicalDSP.html#top.  

It uses the basic ideas above and goes a bit further with the analysis of the sounds.  It also 

has a good discussion of the problems that arise in taking discrete samples of a 

continuous sound.   

 

 

Rusin, Dave,  The Mathematics of Music 

 

This webpage can be found at http://www.math.niu.edu/~rusin/papers/uses-math/music/ 

and contains many interesting links.  The author discusses applications of different types 

of math to music.  This is a great place to start out. 

 

 

Transnational College of Lex, Who is Fourier?  A Mathematical Adventure 

 

This will be one of the strangest math books you will ever read.  There is a large 

organization in Japan (The Hippo Family) whose members like to learn many languages 

at the same time.  While learning these languages, the Hippo Family members noticed 

that they all had five different vowel sounds.  After deciding that mathematics was a 

language itself, they set out to use math to understand why this was the case and wrote up 

their experiences.  Each chapter is written by a different author and attempts to explain 

Fourier Analysis (what we did in sections 6 and 7) to a nonmathematical audience.  This 

book is a lot of fun.  You should check it out. 


