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7.7.1 Governing equations

Let x, y be the horizontal coordinates where x is not necessarily from west to east. Recall
the governing equations for a sea of constant depth H0,

∂η

∂t
+ H0

(
∂u

∂x
+

∂v

∂y

)
= 0. (7.7.1)

∂u

∂t
− fv = −g

∂η

∂x
(7.7.2)

∂v

∂t
+ fu = −g

∂η

∂y
(7.7.3)

Let us derive relations between each velocity component and the surface elevation. Differ-
entiating (7.7.2),

∂2u

∂t2
− f

∂v

∂t
=

∂2u

∂t2
− f

[
−fu − g

∂η

∂y

]
= −g

∂2η

∂x∂t
(7.7.4)

Therefore,
∂2u

∂t2
+ f2u = −g

(
∂2η

∂x∂t
+ f

∂η

∂y

)
(7.7.5)

Similarly,
∂2v

∂t2
+ f2v = −g

(
∂2η

∂y∂t
− f

∂η

∂x

)
. (7.7.6)

These relations are useful for specifying boundary conditions.
Let us eliminate the velocity components to get a single equation for η. From (7.7.5),

(
∂2

∂t2
+ f2

)(
∂u

∂x

)
= −g

(
∂2η

∂x2∂t
+ f

∂2η

∂x∂y

)
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and from (7.7.6), (
∂2

∂t2
+ f2

)(
∂v

∂y

)
= −g

(
∂2η

∂y2∂t
− f

∂2η

∂x∂y

)

Using (7.7.1), we get

− 1

H0

∂

∂t

(
∂2

∂t2
+ f2

)
η = −g

∂

∂t
∇2η

or
∂

∂t

{(
∂2

∂t2
+ f2

)
η −C2

0∇2η

}
= 0 (7.7.7)

This is the Klein-Gordon equation, where

C0 =
√

gH0. (7.7.8)

7.7.2 Waves in a long channel

Consider a channel of width L, −∞ < x < ∞, 0 < y < L. Allowing no flux on the side
walls: v = 0, y = 0, L, we have, therefore, the boundary conditions,

∂2η

∂y∂t
− f

∂η

∂x
= 0 y = 0, L (7.7.9)

Consider propagating waves. Let

η = <
{
η(y)ei(kx−σt)

}
(7.7.10)

We get from (7.7.7),

d2η

dy2
+

[
σ2 − f2

C2
0

− k2

]
η = 0 0 < y < L (7.7.11)

and from (7.7.9),
dη

dy
+

fk

σ
η = 0 y = 0, L. (7.7.12)

The general solution is
η = A sinαy + B cosαy, (7.7.13)

where A and B are constants and

α2 =
σ2 − f2

C2
0

− k2 (7.7.14)

Apply the boundary condition on y = 0:

αA +
fk

σ
B = 0
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and on y = L:

A

(
α cosαL +

fk

σ
sinαL

)
+ B

(
fk

σ
cosαL − α sin αL

)
= 0.

For nontrivial A and B, we must require

∣∣∣∣∣
α fk/σ
α cos αL + (fk/σ) sinαL (fk/σ) cosαL − α sinαL

∣∣∣∣∣ = 0

This gives the eigenvalue equation,
(
σ2 − f2

) (
σ2 − C2

0k
2
)

sinαL = 0. (7.7.15)

there are three possibilities: σ = ±f, σ = ±kC0 and α = nπ/L.

7.7.3 Inertial oscillations, σ2 = f2

It suffices to consider σ = f . From (7.7.14),

α2 = −k2 (7.7.16)

so that
d2η

dy2
− k2η = 0 0 < y < L

Therefore,
η = Ae−ky + Beky

From the boundary conditions

dη

dy
+ kη = 0 at y = 0, L.

which are automatically satisfied by
Ae−ky (7.7.17)

for any k. It easy to show that Beky cannot satisfy both boundary conditions; we must take
B = 0. Therefore,

η = Ae−ky. (7.7.18)

Let us take a closer look at the velocity v. By eliminating u from (7.7.1) and (7.7.2), we
get

− 1

H

∂2η

∂t2
− ∂2v

∂y∂t
= f

∂v

∂x
− g

∂2η

∂x2

Using
η = Ae−kyeikx−ift
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we get
∂2v

∂y∂t
+ f

∂v

∂x
= gAe−kyeikx−ift

(
−k2 +

f2

C2

)

Assume the solution
v = V e−kyeikx−ift

it follows that

2ikV = gA

(
−k2 +

f2

C2

)

Hence the boundary conditions at y = 0, L dictates that

V = 0, and k2 =
f2

C2
(7.7.19)

or
kR = 1 (7.7.20)

The solution is therefore
v = 0, η = gAe−y/Reix/R−ift (7.7.21)

From (7.7.2), we get

u =
gA

C
e−y/Reix/R−ift (7.7.22)

This is called the inertial oscillation, which is a special case of Kelvin wave.

7.7.4 Kelvin Wave, σ = ±C0k

σ

k
= phase velocity = ±C0 = ±

√
gHo

This relation is the same as that for surface gravity waves. Let us focus attention to the
rightward waves and take the plus sign. From Eqn. (7.7.14):

α2 = − f2

C2
0

= − 1

R2

where

R =
C0

f
(7.7.23)

is defined to be the Rossby radius of deformation. Thus

α = ± i

R
,

σ

f
=

kC0

f
= kR, (7.7.24)

and the solution can be written as

η̄ = Ae−y/R + Bey/R (7.7.25)
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Now Ae−y/R satisfy the boundary condition (7.7.12)automatically for all y:
(

d

dy
+

fk

σ

)
e−y/R =

(
− f

C0

+
f

C0

)
e−y/R = 0

hence B = 0, thus
η = Ae−y/Rei(kx−σt) = Ae−fy/C0ei(kx−σt). (7.7.26)

This is the Kelvin Wave. Water is piled up along the shore y = 0 to the right of the wave
vector. See Figure 7.7.1. A field record of English channel is in Figure 7.7.2.

Figure 7.7.1: Kelvin wave along a channel. From Gill

There are some more pecularities. From the momentum equations we have

∂2v

∂t2
+ f2v = −g

(
∂2η

∂y∂t
− f

∂η

∂x

)
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Figure 7.7.2: Kelvin wave in British Channel.

= −g
(
Aeikx−iσte−fy/C0

) [−f

C0
(−iσ0) − fik

]

= −gAeikx−σte−fy/C0i
fσ

C0
(1 − 1) = 0.

Therefore,

v = 0 (7.7.27)

identically. Now the x-momentum equation and mass conservation equation reduce to

∂u

∂t
= −g

∂η

∂x
(7.7.28)

and
∂η

∂t
= −H0

∂u

∂x
(7.7.29)

These are formally the long wave equation in one space dimension x. But η and u depend
on y!! Indeed for the propagating wave

∂u

∂t
= −iσu = −g

∂η

∂x
= −ikgη σ = C0k

hence

u =
kg

σ
η
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From the solution (7.7.26),

∂η

∂y
=

−f

C0
η =

−f

C0

σu

gk
= −fC0

g
.

Therefore,

u = − g

f

∂η

∂y

This is a state of Quasi-static Geostrophy!

Note

R = Rossby radius of deformation =
C0

f
=

[
vel

1/Time

]
= [Length]

If H0 = 30m

C0 =
√

gH0 = 1.732 × 10m/s, f = 10−4s−1

R =
C0

f
= 1.732 × 105m = 173km.

If H0 = 1000m

R = 1000km.

7.7.5 Poincare waves

Consider the eigenvalue condition,

sin αL = 0 α = αn =
nπ

L
n = 0, 1, 2, 3, · · · (7.7.30)

From Eqn. (4.3)

σ2
n − f2

C2
0

− k2 =
(

nπ

L

)2

or

σn = ±
{
f2 + C2

0

[
k2 +

(
nπ

L

)2
]}1/2

.

This relation between frequency and wave number σ = σ(k) is called the dispersion relation.

The dispersion relation can also be written

σn

f
= ±

√√√√1 +

(
C0

f

)2 [
k2 +

(
nπ

L

)2
]

= ±

√√√√1 +

[
(kR)2 +

(
nπR

L

)2
]
. (7.7.31)

See Figure 7.7.3
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The free surface of the n−th Poincare mode is:

ηn = B
(

A

B
sinαny + cos αny

)

= B

(
− fk

σαn
sinαny + cosαny

)

= B

(
cos

nπy

L
− L

nπ

fk

σn
sin

nπy

L

)
.

or,

ηn = η0

(
cos

nπy

L
− L

nπ

fk

σn

sin
nπy

L

)
cos (kx − σnt) (7.7.32)

The veloctiy components are given by

u =
η0

H0

(
C2

0k

σn

cos
nπy

L
− fL

nπ
sin

nπy

L

)
cos(kx − σnt) (7.7.33)

v = − η0

H0

L

σnnπ

(
f2 +

C2
0n

2π2

L2

)
sin

nπy

L
sin(kx − σnt) (7.7.34)

Additional types of waves exist if the depth is not constant, or the water is stratified.
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Figure 7.7.3: Dispersion relation between frequency and wave nujmber.


