Lecture Notes on Fluid Dynamics

(1.63J/2.21J)by Chiang C. Mei, 2006

7.6 Transient longshore wind

[Ref]: Chapter 14, p. 195 ff, Cushman-Roisin Csanady: Circulation in the Coastal Ocean

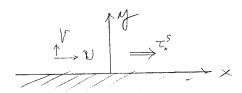


Figure 7.6.1: Longshore wind

Let the x be the coast, and the sea is in y > 0, as seen in Figure 7.6.1.

In view of the last section, we ignore the bottom stress. Assume that the wind is uniform in space but transient in time, so that $\partial/\partial x = 0$, The flux equations are

$$\frac{\partial \eta}{\partial t} + \frac{\partial V}{\partial y} = 0 \tag{7.6.1}$$

$$\frac{\partial U}{\partial t} - fV = \frac{\tau_x^S}{\rho} \tag{7.6.2}$$

$$\frac{\partial V}{\partial t} + fU = -gh \frac{\partial \eta}{\partial y}. (7.6.3)$$

The boundary condition on the coast x = 0: U = 0.

7.6.1 Sudden long-shore wind

Let the wind stress be

$$\tau_x^S = \begin{cases} 0, & t \le 0, \\ T, & t > 0. \end{cases}$$
 (7.6.4)

the initial conditions are

$$\eta, U, V = 0, \quad t = 0, \quad \forall y.$$
(7.6.5)

This initial-boundary value problem can be solved by Laplace transform (Crépon, 1967). The solution consists of two parts: one part is oscillatory and decays with time; the other

part increases monotonically with time. To avoid the complex mathematics we only examine the latter which is the dominant part for large time,

$$U = t\bar{U}(y), \quad V = \bar{V}(y), \quad \eta = t\bar{\eta}(y) \tag{7.6.6}$$

The oscillatory part is needed to ensure the initial condition on U. This solution clears fails for very large t, indicating the there is no steady- state solution in the linearized approximation. For a realistic theory nonlinearity must be accounted for, or the wind duration has to be finite.

It is easy to see from (7.6.1) to (7.6.3) that

$$\bar{\eta} + \frac{d\bar{V}}{dy} = 0 \tag{7.6.7}$$

$$f\bar{U} = -gh\frac{d\bar{\eta}}{dy} \tag{7.6.8}$$

$$\bar{U} - f\bar{V} = T/\rho \tag{7.6.9}$$

These three equations can be combined into one:

$$\frac{d^2\bar{V}}{dy^2} - \frac{f^2}{gh}\bar{V} = \frac{fT}{\rho gh} \tag{7.6.10}$$

The solution satisfies no flux on the coast is

$$\bar{V} = -\frac{T}{\rho f} \left(1 - e^{-x/R_o} \right) \tag{7.6.11}$$

where

$$R_o = \frac{\sqrt{gh}}{f} \tag{7.6.12}$$

is called the Rossby radius of deformation. If we take $f = 10^{-4}$ 1/s in a shallow sea of h = 10 m the Rossby radius is about 10^5 m = 100 km.

It is easy to find that

$$\eta = t\bar{\eta} = t\frac{T}{\rho gh}e^{-y/R_o} \tag{7.6.13}$$

and

$$U = t\bar{U} = t\frac{T}{\rho f}e^{-y/R_o} \tag{7.6.14}$$

Clearly when $y/R_o \gg 1$, the coast line has no influence. The flux is $U = 0, V = -T/\rho f$, and is inclined to the right of the wind by 90 degrees, as predicted by the Ekman layer theory. The sea surface rises if T > 0 (coast is on the right of wind), and sinks near the coast if T < 0 (coast is on the left of wind).

7.6.2 Sinusoidal wind stress

We now consider

$$\tau_x^S = \Re\left(i\tau_0 e^{-i\omega t}\right) = \tau_o \sin \omega t \tag{7.6.15}$$

Let

$$(\eta, U, V) = \Re \left[(\eta_0, U_0, V_0) e^{-i\omega t} \right]$$
 (7.6.16)

The symbol \Re (real part of) will be omitted for brevity, but must be remembered before numerical calculation.

Let us calculate the total flux (The boundary layers can be studied later.),

$$-i\omega\eta_0 + \frac{dV_0}{dy} = 0\tag{7.6.17}$$

$$-i\omega U_0 - fV_0 = i\frac{\tau_0}{\rho},\tag{7.6.18}$$

$$-i\omega V_0 + fU_0 = -gh\frac{d\eta_0}{dy} \tag{7.6.19}$$

An equation for a single variable can be obtained. For example by solving Eqns. (7.6.18) and (7.6.19) for U_0 and V_0 , we get

$$U_{0} = \frac{\begin{vmatrix} i\tau_{0}/\rho & -f \\ -gh\frac{d\eta_{o}}{dy} & -i\omega \end{vmatrix}}{\begin{vmatrix} -i\omega & -f \\ f & -i\omega \end{vmatrix}} = -\frac{\tau_{0}\omega/\rho - ghf\frac{d\eta_{0}}{dy}}{-\omega^{2} + f^{2}}$$
(7.6.20)

and

$$V_{0} = \frac{\begin{vmatrix} -i\omega & i\tau_{0}/\rho \\ f & -gh\frac{d\eta_{0}}{dy} \end{vmatrix}}{\begin{vmatrix} -i\omega & -f \\ f & -i\omega \end{vmatrix}} = \frac{-i\tau_{0}f/\rho + i\omega gh\frac{d\eta_{0}}{dy}}{-\omega^{2} + f^{2}}$$
(7.6.21)

Differentiate Eqn. (7.6.20) and use Eqn. (7.6.17)

$$-i\omega\eta_0 + \frac{i\omega gh}{f^2 - \omega^2} \frac{d^2\eta_0}{dy^2} = 0$$

or

$$\frac{d^2\eta_0}{dy^2} - \frac{f^2 - \omega^2}{gh} \,\eta_0 = 0 \tag{7.6.22}$$

We now distinguish two cases.

Low frequency: $\omega < f$

The solution to (7.6.22) bounded at infinity is

$$\eta_0 = A \, e^{-y/R_0} \tag{7.6.23}$$

where

$$R_0 = \sqrt{\frac{gh}{f^2 - \omega^2}}. (7.6.24)$$

is the modified Rossby radius.

Applying the B.C. on the coast : $V_0 = 0$, y = 0, we get from (7.6.20),

$$\frac{d\eta_0}{dy} = \frac{f}{\rho g H} \frac{\tau_0}{\omega} \stackrel{(7.6.23)}{=} \frac{-A}{R_0}.$$

and,

$$A = -\frac{\tau_0}{\omega} \frac{f}{\rho gh} R_0 \tag{7.6.25}$$

Hence

$$\eta_0 = -\frac{f\tau_0}{\rho\omega gh} R_0 e^{-y/R_o}$$

and finally

$$\eta = -\frac{f\tau_0}{\rho\omega qh} R_0 e^{-y/R_0} e^{-i\omega t}$$
 (7.6.26)

Its real part is the solution.

Now from Eqn. (7.6.20), we get

$$U = \frac{\tau_o \omega}{\rho (f^2 - \omega^2)} \left(1 - \frac{f^2}{\omega^2} e^{-y/R_0} \right) e^{-i\omega t}.$$
 (7.6.27)

From Eqn. (7.6.21)

$$V_0 = -\frac{i\tau_0 f}{\rho(f^2 - \omega^2)} \left(1 - e^{-y/R_0}\right)$$
 (7.6.28)

(7.6.29)

Hence,

$$V = -\frac{\tau_0 f}{\rho (f^2 - \omega^2)} \left(1 - \frac{f^2}{\omega^2} e^{-x/R_0} \right) \sin \omega t.$$
 (7.6.30)

If $\tau_0 > 0$ (wind blows eastward, along the coast), the sea level near the coast sinks at the start .

High frequency : $\omega > f$

Of the two possible oscillatory solutions to (7.6.22), we must choose the one that represents outgoing waves at infinty (the radiation condition),

$$\eta_0 = Be^{ikx},\tag{7.6.31}$$

where the wavenumber is the inverse of the modified Rossby radius of deformation,

$$k = \sqrt{\frac{\omega^2 - f^2}{gh}} \tag{7.6.32}$$

It is easy to show that from the no-flux confditon on the coast thata

$$B = \frac{-i\tau_0 f}{\rho g h \omega k} \tag{7.6.33}$$

hence, in complex form,

$$\eta = -\frac{i\tau_0 f}{\rho g h \omega k} e^{ikx - i\omega t} \tag{7.6.34}$$

or, in real form,

$$\eta = -\frac{\tau_0 f}{\rho g h \omega k} \sin(kx - \omega t), \tag{7.6.35}$$

The final formulas for U, V are left as an exercise.

Homework: For the oscillating-wind problem, find the flow in the inviscid interior and then the flow in the surface boundary layer.