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7.6 Transient longshore wind

[Ref]: Chapter 14, p. 195 ff, Cushman-Roisin
Csanady: Circulation in the Coastal Ocean

Figure 7.6.1: Longshore wind

Let the x be the coast, and the sea is in y > 0, as seen in Figure 7.6.1.

In view of the last section, we ignore the bottom stress. Assume that the wind is uniform

in space but transient in time, so that 9/0x = 0, The flux equations are
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The boundary condition on the coast x =0: U =0.

7.6.1 Sudden long-shore wind
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n, U,V =0, t=0, Vy.

Let the wind stress be

the initial conditions are
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This initial-boundary value problem can be solved by Laplace transform (Crépon, 1967).
The solution consists of two parts: one part is oscillatory and decays with time; the other



part increases monotonically with time. To avoid the complex mathematics we only examine
the latter which is the dominant part for large time,

U=tU(y), V=V(y), n="tiy) (7.6.6)

The oscillatory part is needed to ensure the initial condition on U. This solution clears fails
for very large ¢, indicating the there is no steady- state solution in the linearized approxi-
mation. For a realistic theory nonlinearity must be accounted for, or the wind duration has
to be finite.

It is easy to see from (7.6.1) to (7.6.3) that

dv
N+ — =0 7.6.7
4 (7.6.7)
_ dn
= —gh— .0.
fU=—g a0 (7.6.8)
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These three equations can be combined into one :
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The solution satisfies no flux on the coast is
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where
R, = @ (7.6.12)

is called the Rossby radius of deformation. If we take f = 107 1/s in a shallow sea of
h = 10 m the Rossby radius is about 10°> m = 100 km.
It is easy to find that

T
n =t = t—pghe*y/ fo (7.6.13)
and
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Clearly when y/R, > 1, the coast line has no influence. The flux is U =0,V = =T /pf, and
is inclined to the right of the wind by 90 degrees, as predicted by the Ekman layer theory.
The sea surface rises if 7' > 0 (coast is on the right of wind), and sinks near the coast if
T < 0 (coast is on the left of wind).



7.6.2 Sinusoidal wind stress

We now consider
0 =R (Z'Toe_Mt) = T,sinwt

Let
(0, U, V) = R [ (0, Uy, Vi) e ']
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The symbol R (real part of) will be omitted for brevity, but must be remembered before

numerical calculation.
Let us calculate the total flux (The boundary layers can be studied later.),
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An equation for a single variable can be obtained. For example by solving Eqns.

and (7.6.19) for Uy and V), we get
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Differentiate Eqn. (7.6.20) and use Eqn. (7.6.17)
w4 _wgh d*no
"o 2 w2 dy?
or
d2770 f2 _ wQ
dy2 - gh To = 0

We now distinguish two cases.
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Low frequency: w < f
The solution to (7.6.22) bounded at infinity is

n = A e~ Y/ Ro
where
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is the modified Rossby radius.
Applying the B.C. on the coast : V5 =0, y =0, we get from (7.6.20),
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Its real part is the solution.
Now from Eqn. (7.6.20), we get

ToW f2 —y/R —iwt
U= m <1 — Ee Y 0) (& .
From Eqn. (7.6.21)
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V:—m <1—E6 /Ro sin wt.
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If 79 > 0 (wind blows eastward, along the coast), the sea level near the coast sinks at the

start .



High frequency : w > f

Of the two possible oscillatory solutions to (7.6.22), we must choose the one that represents
outgoing waves at infinty (the radiation condition),

n = Be™?, (7.6.31)

where the wavenumber is the inverse of the modified Rossby radius of deformation,

k= ”29_th (7.6.32)
It is easy to show that from the no-flux confditon on the coast thata
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hence, in complex form, '
n= _%eim_m (7.6.34)
or, in real form,
n= _png(;f)k sin(kx — wt), (7.6.35)

The final formulas for U,V are left as an exercise.
Homework: For the oscillating-wind problem, find the flow in the inviscid interior and then
the flow in the surface boundary layer.



