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7.5 Cyclonic current forced by a swirling wind

We now give an example where there is horizontal nonuniformity. Of practical interest is the
case of nonuniform wind stress on the surface. As an extremely simplified model we consider
a vortical wind stress over a large sea1. See Figure 7.5.1.

Figure 7.5.1: Steady cyclonic flow in a shallow sea forced by swirling wind

Let us restricting to a low Rossby number flow for simplicity. Continuity requires:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (7.5.1)

The momentum equations are

−fv = −1

ρ

∂p

∂x
+ ν∇2u (7.5.2)

fu = −1

ρ

∂p

∂y
+ ν ∇2v (7.5.3)

0 = −1

ρ

∂p

∂z
+ ν ∇2w (7.5.4)

1Acheson demonstrated a very similar problem of a circular layer of water bounded above and below by
two horizontal planes. While the bottom plane rotates about the vertical axis at the rate Ω the top cover
rotates steadily at a different rate (1 + ε)Ω.
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The boundary conditions are : no slip on the bottom:

u = v = w = 0, z = 0 (7.5.5)

and given wind stress on the top:

τS
θz = ρTr/2, τS

rz = 0, z = H. (7.5.6)

The wind stress is cyclonic, where T is the curl of the wind stress vector (divided by ρ):

∇× �τS = �k

(
1

r

∂

∂r
(rτS

θz) −
1

r

∂τS
rz

∂θ

)
= ρT�k. (7.5.7)

It has the dimension of L/T 2. In cartesian coordinates the wind stress components are:

τS
xz = −τS

θz sin θ = −ρT

2
r sin θ = −ρT

2
y, (7.5.8)

τS
yz = τS

θz cos θ =
ρT

2
r cos θ =

ρT

2
x, (7.5.9)

Kinematically we assume that
w = 0, z = H. (7.5.10)

7.5.1 Inviscid core

Outside the surface an bottom boundary layers, we have

−fvI = −1

ρ

∂p

∂x
(7.5.11)

fuI = −1

ρ

∂p

∂y
(7.5.12)

This is clearly the state of geostrophyic balance. Momentum balence in the vertical direction
is trivial,

0 = −1

ρ

∂p

∂z

Consequently uI and vI must be independent of z. in accordance with the Taylor-Proudman
theorem. Note that conservation of mass is automatically satisfied,

∂uI

∂x
+

∂vI

∂y
= 0

and the vorticity is
∂vI

∂x
− ∂uI

∂y
= −1

f

(
∂2p

∂x2
+

∂2p

∂y2

)

The horizontal components uI(x, y), vI(x, y) are not determined yet. The vertical velocity
wI can at best be a contant in z.
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7.5.2 Bottom boundary layer

Let us keep the dominant viscous stress terms in the momentum equations,

−f (v − vI) = ν
∂2 (u − uI)

∂z2
(7.5.13)

f (u − uI) = ν
∂2 (v − vI)

∂z2
(7.5.14)

The boundary conditions are

u − uI = −uI v − vI = −vI z = 0
u − uI → 0 v − vI → 0 z � δ

where

δ =

√
2ν

f
(7.5.15)

is the Ekman boundary layer thickness.
The solution is left to the reader as an exercise

u − uI = −e−z/δ
(
uI cos

z

δ
+ vI sin

z

δ

)
(7.5.16)

v − vI = −e−z/δ
(
vI cos

z

δ
− uI cos

z

δ

)
. (7.5.17)

From continuity, the vertical component can be computed. Let ζ = z/δ,

∂w

∂z
=

1

δ

∂w

∂ζ
= −

(
∂u

∂x
+

∂v

∂y

)
(7.5.18)

=

(
∂vI

∂x
− ∂uI

∂y

)
e−ζ sin ζ +

(
∂uI

∂x
+

∂vI

∂y

) (
e−ζ cos ζ

)
.

The second term vanishes, hence,

w = δ
∫ ζ

0
dζ

(
∂vI

∂x
− ∂uI

∂y

)
e−ζ sin ζ

= δ

(
∂vI

∂x
− ∂uI

∂y

)
e−ζ

2
(− sin ζ − cos ζ)

∣∣∣∣∣
ζ

0

=
δ

2

(
∂vI

∂x
− ∂uI

∂y

) [
1 − e−ζ (cos ζ + sin ζ)

]
.

At the outer edge of the bottom boundary layer, ζ = z/δ � 1

w(∞) ≡ δ

2

(
∂vI

∂x
− ∂uI

∂y

)
=

δ

2
ωI (7.5.19)

where ωI is the vorticity in the geostrophic interior. Thus there is vertical flux from the
bottom boundary layer when the interior flow is horizontally nonuniform; this is called the
Ekman pumping!

We still don’t know the geostrophic flow field.
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7.5.3 Surface boundary layer

The momentum equations are

−f (v − vI) = ν
∂2 (u − uI)

∂z2
(7.5.20)

f (u − uI) = ν
∂2 (v − vI)

∂z2
.

On z = H the boundary conditions are

ν
∂u

∂z
= −T

2
y, ν

∂v

∂z
=

T

2
x, z = H (7.5.21)

Far beneath the surface
u → uI , v → vI ; (H − z) � δ (7.5.22)

Let us introduce the boundary-layer coordinate

η =
H − z

δ
0 < η < ∞. (7.5.23)

so that
∂

∂z
→ −1

δ

∂

∂η
(7.5.24)

The solution satisfies the momentum equations and (7.5.22) is of the form

u − uI = e−η (A cos η + B sin η) (7.5.25)

v − vI = e−η (B cos η − A sin η) . (7.5.26)

In order to satisfy (7.5.21), we first note that

∂u

∂η
= e−η ((−A + B) cos η + (−A − B) sin η) (7.5.27)

∂v

∂η
= e−η ((−A − B) cos η + (A − B) sin η) . (7.5.28)

Applying (7.5.21), we get

−ν

δ
(−A + B) = −Ty

2
, − ν

δ
(−A − B) =

Tx

2
(7.5.29)

with the results,

A =
Tδ

4ν
(x − y), B =

Tδ

4ν
(x + y) (7.5.30)

Hence the horizontal velocities are

u − uI =
Tδ

4ν
e−η ((x − y) cos η + (x + y) sin η) (7.5.31)

v − vI =
Tδ

4ν
e−η ((x + y) cos η − (x − y) sin η) . (7.5.32)
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By continuity

∂w

∂z
= −1

δ

∂w

∂η
= −

(
∂u

∂x
+

∂v

∂y

)
,

∂w

∂η
=

Tδ

4ν
e−η(2 cos η + 2 sin η)

the vertical velocity can be found,

w(η) =
Tδ2

2ν

∫ η

0
dη e−η (cos η + sin η)

=
Tδ2

4ν

[
e−η (− cos η + sin η) + e−η (− cos η − sin η)

]η
0

=
Tδ2

2ν
(1 − e−η cos η) (7.5.33)

At the outer edge of the surface boundary layer η � 1

w(∞) = wT =
Tδ2

2ν
(7.5.34)

By Taylor-Proudman theorem, w(z) = wB = wT . Therefore

wB =
δ2

2
ωI =

Tδ2

2ν
= wT (7.5.35)

and the interior vorticity is

ωI =
Tδ

ν
. (7.5.36)

What are uI and vI? In cylindrical polar coordinates

ωI =
1

r

∂

∂r
(r uIθ

) − 1

r

∂uIr

∂θ
==

1

r

∂

∂r
(r uIθ

) .

Since ∂/∂θ = 0, we have ,

ωI =
1

r

d

dr
(r uIθ

)

d

dr
(r uIθ

) =
Tδ

ν
r

which implies

uIθ
=

Tδ

2ν
r.

Since
1

r

∂

∂r
(r uIr) +

1

r

∂uθ

∂θ
= 0
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which leads to
uIr = 0.

The interior flow is geostrophic and cyclonic.
In cartesian form we have

uI = −uIθ
sin θ = −Tδ

2ν
r sin θ, (7.5.37)

vI = uIθ
cos θ =

Tδ

2ν
r cos θ (7.5.38)

Now the radial component inside the bottom boundary layer is

ur = ur − uIr

since uIr = 0. The latter is

ur − uIr = −e−ζ [(uI cos ζ + vI sin ζ) cos θ + (vI cos ζ − uI sin ζ) sin θ]

= −e−ζ [cos ζ(uI cos θ + vI sin θ) + sin ζ(vI cos θ − uI sin θ)]

= −e−ζ sin ζ(vI cos θ − uI sin θ)

= −Tδr

2ν
e−ζ sin ζ(cos2 θ + sin2 θ)

= −Tδr

2ν
e−ζ sin ζ

and is negative in most of the boundary layer. Hence the flow spirals inward towards the
z axis in the bottom boundary layer. Similarly one can show that the flow in the surface
boundary layer has an outward radial component.

In summary, the swirling wind induces a vorticity T/ν in the geostrophic interior. The
flow in the bottom Ekman layer spirals inward, rises vertically at a uniform velocity while
spiralling at the angular velocity T/ν and maintaining a constant vorticity in the geotrophic
interior, then spirals outward in the surface Ekman layer. The flow is therefore cyclonic.


