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Lecture Notes on Fluid Dynamics
(1.63J/2.21J)

by Chiang C. Mei, 2006

7.4 Steady and uniform onshore wind in a shallow Sea

We now examine a few simple examples. In this section we consider an ideal situation where
the horizontal length scale is infinite, so that only the vertical variations are essential. In
the next section we demonstrate the effects of horizontal nonuniformity. In these examples
small Rossby number is assumed from the outset.

Let us consider the effects of steady onshore wind on an infinitely long coast. Momentun
transfer from the wind must go through shear, hence viscosity must te present. To be
confirmed later, we expect the viscous effects to be important in thin boundary layers near
the sea surface and the bottom. Let us augment the inviscid shallow water equations with the
most important turbulent shear stress τxz, τyz. Horizontal shear stresses τxy, τxx, τyy can be
ignored if we are sufficiently far away from the coast line. Using the crudest approximation
of constant eddy viscosity, ν, the governing equation in a shallow sea are

∂η

∂t
+

∂U

∂x
+

∂V

∂y
= 0 (7.4.1)

where

U =
∫ 0

−h
udz, V =

∫ 0

−h
vdz (7.4.2)

are the depth-integrated transport rates in x, y directions.

∂u

∂t
− fv = −g

∂η

∂x
+ ν

∂2u

∂z2
(7.4.3)

∂v

∂t
+ fu = −g

∂η

∂z
+ ν

∂2v

∂z2
(7.4.4)

The boundary conditons on the sea surface are

μ
∂u

∂z
= τS

x , μ
∂v

∂z
= τS

y (7.4.5)

On the seabed, tubulence effects are complicated so that the friction is often modeled by an
empirical law:

τB
x = Cfu

√
(u2 + v2), τB

y = Cfv
√

(u2 + v2), (7.4.6)

These make the problem nonlinear. We shall study a simpler model which is more appropriate
for the laboratory,

u = v = w = 0, z = −h (7.4.7)
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Integrating over depth and defining the horizontal transport rates,

U =
∫ 0

−h
udz, V =

∫ 0

−h
vdz (7.4.8)

Note that U, V are fluxes with the dismension of(veloctiy)×(depth). We then get

∂η

∂t
+

∂U

∂x
+

∂V

∂y
= 0

∂U

∂t
− fV = −gh

∂η

∂x
+

τS
x

ρ
− τB

x

ρ

∂V

∂t
+ fU = −gh

∂η

∂y
+

τS
y

ρ
− τB

y

ρ
.

where

τS
x = ρν

[
∂u

∂z

]
z=0

, τS
y = ρν

[
∂v

∂z

]
z=0

(7.4.9)

τB
x = ρν

[
∂u

∂z

]
z=−h

, τB
y = ρν

[
∂v

∂z

]
z=−h

(7.4.10)

As an order estimate, the scale of the horizontal flux is

[U ] ∼ τS

ρf
∼ u2

∗
f

where u∗ is the friction velocity. A vertical boundary layer (of Ekman) can exist wherein
Coriolis force ρfU balances the viscous stress

ρfU ∼ τ ∼ ρν
∂u

∂z
∼ ρν

U

h

1

δ

Therefore, the Ekman layer thickness is

δ = O

(√
ν

f

)

A typical value of eddy viscosity is ν = 1 cm2/s and f = 10−4 1/s. Therefore the Ekman
layer thicknss is O(1) m.

Our strategy is to get the horizontal transport, then the details of the boundary layers.

7.4.1 Wind setup due to steady onshore wind

Consider an infinitely long coastline along the x axis. The sea is on the side y > 0. Assume
τS
y to be a given constant. Consider the steady state ∂/∂t = 0 and ignore τB first1. Beginning

from the equations :
∂U

∂x
+

∂V

∂y
= 0.

1This will be checked later
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−fV = −gh
∂η

∂x

+fU = −gh
∂η

∂y
+

τS
y

ρ

with
V = 0, y = 0 (7.4.11)

Uniformity in x implies ∂η/∂x = 0 hence V ≡ 0 everywhere. Let us assume that far at
x ∼ −∞, the coast is blocked by a continent. We must have

U = constant = 0, for allx (7.4.12)

Thus the total fluxes in the horizontal directions are zero. The only dynamics effect of wind
is to induce a sea-level change: wind Set-up.

gh
∂η

∂y
=

τS
y

ρ
. (7.4.13)

η =
τS
y

ρgh
y + constant

=
ρu2

∗
ρgh

y =
u2
∗

gh
y.

If u∗ = 1 cm/sec then τS
y = 0.1 Pa. Take ρ = 103 kg/m3, g = 10 m/sec2 and h = 30 m

u2
∗

gh
=

(10−2)
2

10 · 30
= 3 × 10−7.

Note that

1 atm = 105N/m2, 1N/m2 = 1Pa =
1

670
psi.

For g = 10m/s2 h = 30m the set up is calculated as follows.

τS
y

∂η
∂y

Δy Δη

0.1 Pa 3 × 10−7 100 km 3 cm
3 Pa 10−5 300 km 3 m

Although there is no mean flow (or flux), there is internal flow. We now look at the
detailed distribution in z, by deviding the depth into three parts: the geostrophic interior,
the surface Ekman layer, and the bottom Ekman layer.
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7.4.2 Geostrophic core

Outside the boundary layers, we have

−fvg = −g
∂η

∂x
= 0, (7.4.14)

fug = −g
∂η

∂y
= −u2

∗
h

, or ug = −g
∂η

∂y
= − u2

∗
fh

, (7.4.15)

In this geostropic balance, vg = 0. There is a longshore current ug �= 0 in the core, pointing
to the left of the wind. This solution cannot satisfy the sea-surface boundary condition.
Boundary corrections are needed.

7.4.3 Surface Ekman layer

Now viscosity is important, so that the total velocity is governed by

−fv = −g
∂η

∂x
+ ν

∂2u

∂z2

fu = −g
∂η

∂y
+ ν

∂2v

∂z2
.

For this example
∂η

∂x
= 0,

∂η

∂y
=

τS
y

ρgh
=

ρu2
∗

ρgh
=

u2
∗

gh

hence

−fv = ν
∂2u

∂z2
(7.4.16)

fu = −u2
∗

h
+ ν

∂2v

∂z2
. (7.4.17)

As long as δ/h � 1, bounday-layer approximation can be made. Let us make some estimates
based on empirical data, cited from Csanady :

δ = 0.1
u∗
f

, ν =
u2
∗

200f
, Re∗ =

u∗δ
ν

= 20

Pedlosky :
ν = 1 ∼ 103cm2/sec

δ =

√
1 ∼ 103

10−4
cm = 102cm ∼ 3 × 103cm.

Let the total velocity in the surface boundary layer be

u = ug + uE = −u∗2

fh
+ uE, v = vg + vE = vE . (7.4.18)
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so that (uE, vE) are the boundary layer corections. Then for z < 0, we have

−fvE = ν
∂2uE

∂z2
(7.4.19)

fuE = ν
∂2vE

∂z2
(7.4.20)

The boundary conditions are

ν
∂uE

∂z
= 0, ν

∂vE

∂z
= u2

∗ on z = 0

uE , vE → 0 z → −∞.

This is the Ekman boundary-layer problem. The solution is best obtained by introducing
the complex velocity,

qE = uE + ivE

then

iqE = ν
∂2qE

∂z2
or

d2qE

dz2
− if

ν
qE = 0

Let the solution be of the form,

qE ∝ eDz

then

D2 − if

ν
= 0

Since

(i)1/2 = ±eiπ/4 = ±1 + i√
2

.

We get

qE = A exp

⎛
⎝1 + i√

2

z√
ν/f

⎞
⎠ = A e(1+i)z/δ. (7.4.21)

Let

δ =

√
2ν

f
(7.4.22)

denote the Ekman boundary layer thickness. Apply the boundary condition on the sea
surface,

ν
∂qE

∂z

∣∣∣∣∣
0

= i u2
∗

hence

A =
i u2

∗ δ

(1 + i)ν
.
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The solution is

qE = uE + i vE =
iδ u2

∗
(1 + i)ν

e(1+i)z/δ =
δ u∗2

2ν
(1 + i) ez/δ

(
cos

z

δ
+ i sin

z

δ

)
(7.4.23)

Separating real and imaginary parts, we get the velocity components,

uE =
δ

2

u2
∗

ν
ez/δ

[
cos

z

δ
− sin

z

δ

]
(7.4.24)

vE =
δ

2

u2
∗

ν
ez/δ

[
cos

z

δ
+ sin

z

δ

]
. (7.4.25)

Let us show the velocity vector at various height in a hodograph where the vector begins
at the orgin. The position of the tip is a function of z. The trajectory of the tips is the
hodograph. The hodograph is the spiral shown in Figure 7.4.1,

Figure 7.4.1: Hodograph in the Ekman boundary layer as a function of z/δ.

1. Physical Remark #1:
Maximum velocity occurs on z = 0:

uE(0)

u∗
=

vE(0)

u∗
=

u∗
fδ

(

 ug

u∗
=

u∗
fh

)
.

and is 45 degrees to the right of wind.
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2. Physical Remark #2 :
The total flux in Ekman layer is

UE
x + iV E

y =
∫ 0

−∞
dz (uE + i vE) =

∫ 0

−∞
dz qE

=
δ u2

∗
2ν

(1 + i)
∫ 0

−∞
e(1+i)z/δdz

=
δ u2

∗
2ν

(1 + i) · δ

1 + i
· e(1+i)z/δ

∣∣∣0−∞ =
δ2 u2

∗
2ν

=
u2
∗

f
.

where

δ2 =
2ν

f
.

Therefore the total mass flux in Ekman layer is 90 degrees inclined with respect to
wind.

3. Physical remark # 3:
Note that the flux in the surface Ekman layer is of the opposite sign as, hence is
counter-balanced by, the geostrophic return flow beneath. Since ug is very week, the
velocity in the bottom Ekman layer must also be very weak. The flux thorugh the
bottom boundary layer is therefore neglible, as will shall deduce below.

7.4.4 Bottom Ekman layer

The total flow is governed by

−fv = ν
∂2u

∂z2
fu = fug + ν

∂2v

∂z2
.

Let
uE = u − ug vE = v (7.4.26)

so that

−fvE = ν
∂2uE

∂z2
, fuE = ν

∂2vE

∂z2
(7.4.27)

Let us shift to new coordinates with the origin on the sea bed so that the boundary conditions
are

z → ∞, uE, vE → 0 (7.4.28)

and
z = 0, uE = −ug, vE = 0 (7.4.29)

Let
qE = uE + ivE qE = A e−(1+i)z/δ (7.4.30)

Since there is no slip at z = 0
qE = −ug.
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We conclude,
A = −ug.

and

qE = (uE + ivE) = −ug e−(1+i)z/δ

= −uG e−z/δ
(
cos

z

δ
− i sin

z

δ

)
.

Therefore,

uE = −ug e−z/δ cos
z

δ

vE = ug e−z/δ sin
z

δ
.

The bottom shear stress is

ν
∂qE

∂z
=

1 + i

δ
ug e−(1+i) z/δ

at z = 0

ν
∂qE

∂z

∣∣∣∣∣
0

=
1 + i

δ
ug = −1 + i

δ

u2
∗

fh
.

It is O(1/δhf) times that of the surface stress. Using u∗ = 10−2 m/s, δ = 1m, h = 30 m
and f = 10−41/s, then 1/δfh ∼ 1/30 � 1. However if the wind stres is sufficiently strong,
the bottom stress can be significant and the theory needs to be revised. Alternately the
empirical boundary condition (7.4.6) should be used.

The total flux in bottom Ekman layer is

UE + iVE =
∫ ∞

0
(uE + ivE) dz

= −ug

∫ ∞

0
e−(1+i/δ)zdz

= −ug
1

−(1 + i)/δ
e−(1+i/δ)z

∣∣∣∞
0

= −ug
δ

1 + i
=

u2
∗

fh

δ

1 + i
=

δ

2
(1 − i)

u2
∗

fh

It is of order δ and is directed at 135 degrees to the right of wind.

7.4.5 Summary

:

• Total Ekman layer flux on top is u2
∗/f

• Total geostropic flux is −u2
∗/f

• Total bottom Ekman layer flux is very small O
[

u2∗
f

(
δ
h

)]
.


