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7.1 Introduction

Over a large spatical sclale (hundreds of kilometers or more), motion of sea water can be
forced by wind, and affected by earth rotation. Wind owes its orgin to sun.
SUN, THE DRIVING FORCE:

1. induces temperature variation in the atmosphere, hence wind, which creates waves on
the surface, and drives the ocean current.

2. Solar radiation, evaporation, precipitation, ice melting or freezing, etc cause tempera-
ture and salinity variation in the sea, hence stratification and thermohaline circulation.

EARTH ROTATION affects the ocean circulation:

Refering to Figure 7.1, let a missile be shot northward from a station on the equator of
the rotating earth. While moving north, the missile initially has the same eastward velocity
component as the earth, to a stationary observer in space. To an observer on the equator,
however, the missle moves straight to the north. As the missile moves north, the ground
moves beneath it. But the ground speed diminishes towards the north pole. To the earth
beneath, the missile has an eastward velocity component, hence is deflected as if by an
apparent force : Coriolis force. The apparent force increases as the missile goes further
north.

Note:

e The Coriolis force acts at right angle to the direction of motion. If the missile is aimed
to the north pole, i.e., traveling in the northern hemisphere, it will be deflected to the
right of its path. If it is aimed to the south pole, the deflection is to the left.

e The Coriolis force increases from zero at the equator to the miximum at the north
pole.

Fluid-mechanical problems of importance to coastal environment: Wind waves. Storm
surges, Tides, waves and internal waves. Upwelling.
We now derive the Coriolis force mathematically.
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7.2 Equations of Motion in Rotating Coordinates

Since the earth is rotating about the polar axis, the coordinate system fixed on earth is
rotating. We need to know how to express the time rate of change of dynamical quantities
in the rotating coordinates.

A vector fixed in the rotating coordinate system is rotating in the fixed (inertial) coordi-
nate system. Consider therefore a vector rotating in the inertial frame of reference.

7.2.1 Vector of constant magnitude

If A= A& has a constant magnitude but is rotating about an axis at the angular vecocity
2, what is the rate of change dA/dt in the fixed coordinate (inertial) system? Let

dA = A(t + dt) — A(t)

dA\ L df
(E)I = €| A| sin T

where subscript [ signifies ”inertial system” and € is the unit-vector along dA. Since & L A
and € L Q, we can write

From Figure 7.2.2,
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it follows that

In particular, let A= €;,1 = 1,2,3 be a base vector of unit length in the rotating frame
of reference,

—

A=¢;

then
de;
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o X € (7.2.2)
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7.2.2 A vector of variable magnitude

Let .
B =B

be any non-constant vector in the rotating frame, and let

a8\ _as.
dt ~at @
R

denote its rate of change in the rotating frame. then

dB dB; _ dé, dB I dB L

Application (i): In particular, if B = 7 is the position of a fluid particle, then the
velociy of a fluid particle is
dr) _ dr +OxF
dt|, dt|, ’
Note that 7 is the same in any coordinate system. Now (di’/dt); is the particle velocity seen
in the inertial frame of reference and (dr’/dt)g is the particle velocity seen in the rotating
frame of reference. Note that these time derivatives are Lagrangain (material) derivatives,

hence

L dF
= u
hence,
G =qn+ Q%7 (7.2.4)

Application (ii): Next we let B = ¢r be the velocity vector of fluid in the rotating
frame of reference; its rates of change in the two frames of reference are related by

+ O X G (7.2.5)
R

i
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Taking the Lagrangian time derivative of (7.2.4), and assuming that the angular acceleration
of earth to be zero,

-0
dt
we get
ai\ () g (47
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t ). dt) .
dq - - -
= <ﬂ> + 2Qxgr +Qx(QxT) (7.2.6)

— Coriolis acc.  centripetal



The second term on the right is the negative of the Coriolis force, being perpendicular to
both ¢ and €2. With the help of the left hand, one can see that the force is directed to the
right of the velocity. The negative of the last term represents the centrifugal force

Qx (Qx7) =02,

See Figure 7.2.3 for the geometric relations.
The centrifugal force may be written in terms of a centrifugal force potential ¢. where

1 = = 1
be =5 (2 x7)- (2 x7) = SQPrL. (7.2.7)
so that do
Ve = G, fu = 10000 (7.2

7.2.3 Summary of governing equations in rotating frame of refer-
ence:

Continuity:
V-¢=0 (7.2.9)

In the coordinate system rotating at the constant angular velocity, the momentum equation
reads, after dropping subscripts R

dq = -
p <d_:f] + 20 x q) = —Vp+ pV (¢, + ¢c) + nV?q (7.2.10)

where
Remember that

is the Lagrangian derivative.

7.2.4 Dimensionless parameters
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2~ 2
QIglvxqj = 1/2UQ/£ = 3 S;L2 = Ekman number
v¢g = g
Vo. = Q%
For numerical estimate, we take Q = 5 — = 2.31 x 10™°s~! and r = earth radius = 6400

km. Then w? ~ (2.31 x 1079)% x 6.4 x 10° ~ 3 x 1073m/s? while g ~ 10m/s?. Hence

g > O?r; gravity is more important than centripetal force.

7.2.5 Coriolis accelertion in the shallow sea

We introduce the spherical polar coordinates as in the left of Figure 7.2.4, with 6 being the
latitude. In the northern hemisphere, 0 < 6 < /2.
Refering to the right of Figure 7.2.4, the angular velocity of the earth is:

Q =7 (—Qcosf) + 7(0) + k(Qsin )

The Coriolis force is

—

. i J k
20 x =] —2Qcos 0 22 sin 0
u v w

= 7 (=2Qusinb) + j (2Qusin 6 + 2Qw cos 0) + k (—2Qw cos 6)

Consider shallow water where the depth D is much less than the horizontal length L, i.e.,

-,

D < L, and compare the two terms in the y direction of (7)

2Qwcosl  w D
— = — - 1
2Qu sin 6 uCOte O(L>C0t0<<

except along the equator where § = 0. We have used continuity so that w/u = O(D/L).

-

In the vertical (z) direction along (k),

—2Qw cos _ —2(21%(:059 _ D —2Qucosd _0 (Q) <1
B FE Lam(Liou) O\
Hence in a shallow sea
20 x = i(—2Qusin 0) + j(2Qu sin 0)
Define
f=2Qsin6 (7.2.11)

to be the Coriolis parameter , then

2 x G —fvi+ fuj (7.2.12)
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Figure 7.1.1: Effect of earth rotation. Copied from Brown et al, p 7.
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Figure 7.2.2: Vector A(t) rotating at the angular velocity 0.
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Figure 7.2.3: Coriolis force, position vector and angular velocity
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Figure 7.2.4: The Northern hemisphere.



