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6.6 Rayleigh-Darcy (or Horton-Rogers-Lapwood) in-
stability in a porous layer
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Nield & Bejan, Chapter 6 Convection in Porous Media
Related: Rayleigh-Bernard Problem (Chandrsekhar, Chapter 11, Hydrodynamic and Hy-
dromagnetic Stability)

If a layer of viscous fluid is heated from below, instability can occur and leads to convec-
tion cells important in meteorology. (Rayleigh-Benard Problem).
If a saturated porous layer is heated from below, similar instabilily and convection can occur.
This is of basic interest to geothermal convection and is relevant to the complex problem of
heat transport due to the burial of nuclear waste in mountains or in a seabed.

To give some visual ideas of what can happen in porous media, we shall borrow some
photographic evidence for the mathematically similar Rayleigh-Benard problem of a pure
fluid layer heated form below.
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Figure 6.6.1: A saturated porus medium in geothermal gradient

Static state

Hence p
Ts =T, + AT (1 - —> (6.6.1)

Static equilibrium:



hence AT ,
Ps = Do — Pod {Toz + BT (% — 22) } (662)

Consider the perturbed state of small disturbances:

u=0+u, T=Ts+T, P=ps+p (6.6.3)
then
Vou =0 (6.6.4)
0=-Vp — %u' + Bgp,T'k (6.6.5)
o1 , 2
(pCm G + (pC) - VT = K V°T (6.6.6)

6.6.1 Non-dimensionalization

. Let Ky, 6, = K,/ (pC) s be the conductivity and diffusivity of the mixture, and k the
permeability. Define

h2
(x,y,2) — h(z",y", 2%), t — U—t*,
u - %nu*, T = ATO, o — %p* (6.6.7)
Then, after omitting * for brevity, we get
Vou=0 (6.6.8)
0=—-Vp—u+ Rabk (6.6.9)
00 9
— —w=V* 6.6.10
5% Y=V ( )
where LBATH
Ra = prgkbATh Rayleigh number in a porous medium (6.6.11)
[iFim,

is the Rayleigh number (ratio of buoyancy force to diffusive resistence) of the porous medium.
In Benard’s problem, Rayleigh number is defined as

ATh*
Ra = L, Rayleigh number in a pure fluid (6.6.12)
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Sometimes one calls

k
D Darcy number (6.6.13)
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Darcy number so that Rayleigh number of a porous medium is the product of the traditional
Rayleigh number and Darcy number.
Taking the curl of (6.6.9),
V x u = Ra(if, — jb,) (6.6.14)

Note that the z compoent of the vorticity vector is zero.
Taking the curl again and using

VxVxu=V(V-u)-Vu

we get
V’u = —Ralif. + 0. — k(0.s +0,,)]

Taking the z component, we get

V2w = RaV$0 (6.6.15)
where o2 o2
2
= — 4+ — 6.1
Vi 2 + B (6.6.16)

is the horizontal Laplacian.
Equations (6.6.10) and (6.6.15) couple the two unknowns w and ¢. The boundary con-
ditions are
w=0=0, z=0,1 (6.6.17)

After they are solved the other velocity components and pressure can be found.

6.6.2 Solution for sinusoidal disturbances

Let
(w,0) = (W(z),0(2)) exp(ilz + imy — iwt) (6.6.18)
and y
D=—
dz
then from (6.6.10),
—iwO® — W = (D? — a*)© (6.6.19)
and from (6.6.15)
(D? — a®>)W = —a*Ra® (6.6.20)
where
a’ =0 +m? (6.6.21)

The boundary conditions are :

W=6=0, z=0,1 (6.6.22)



Because the equations and the boundary conditons are homogeneous, the problem for W
and 0 is an eigenvalue problem.
Note that [, m, a are related to dimensional wave numbers by

2mh 27Th 11 1z

’ (6.6.23)

6.6.3 Principle of exchange of stabilities

We shall first show that w must be purely imaginary. Multiplying (6.6.20) by W* and
integrating from z = 0 to z = 1, we get, after partial integration and using the boundary
conditions,

1 1
—/ (|DW > + a*|W|?)dz = —azRa/ W*Odz (6.6.24)
0 0
Similarly we multipy (6.6.19) by ©* and integrating from z = 0 to z = 1, and get
/ (|DO* + a®|©*)dz = —zw/\@\ dz—/ We*dz (6.6.25)
Taking the complex conjugate of the second equation
1 1
—/ (|IDO* + a?|0*)dz = iw* / 10|2dz — / W*Odz (6.6.26)
0 0

Eqgs (6.6.24) and (6.6.26) can be combined by eliminating the cross product terms, ,

1 1 1
—/ (|DO)? + a*|0*)dz = —iw* / ©%dz — — / (|IDW | +a*|W|*dz  (6.6.27)
0 a’*Ra [,
Since all integrals above are real, —iw* = —w; — iw, must also be real. We conclude that
wr, =0, hence —iw= —w; (6.6.28)

Marginal stability (the threshold of instability) occurs at w, = w; = 0. If w; > 0, the
static state is unstable; w; = 0, marginally stable; if w; < 0, stable. A problem where the
eigenfrequency is real so that marginal instabililty occurs when w = 0 is said to obey the
principle of exchange of stabilities.

6.6.4 Solution to eigenvalue problem

Consider the situation at marginal stability : w = 0,

(D? — a®>)W = —a*Ra® (6.6.29)



~W = (D*-a*)© (6.6.30)
Eliminating ©, we get
(D? — a®)*W = a®*RaW (6.6.31)
subject to
W =0, DW=0, 2=0,1 (6.6.32)
Expanding (6.6.31)
D*W —2a?D*W + a*W = a®* RaW (6.6.33)

Clearly D*W =0 on z = 0, 1. Differentiating (6.6.33) twice we see that D® =0 on 2z =0, 1.
Repeating the process we find

D™ =0, m=1,2,3,---, on z=0,1 (6.6.34)

Therefore the eigensolution must be

W ~ sin jmz (6.6.35)
To satisfy (6.6.31) it is necessary that
7272 + a2]2 '
Ra = B for j =1,2,3..., (6.6.36)

which is the eigenvalue condition. For any j, Ra becomes unbounded for both a? — 0 and
a® — oo and is curve concave upward in the plane of a?(abscissa) vs, Ra (ordinate).
The lowest threshold occurs at 7 = 1, and

ORa
Oa?
ie.,
a? = 72 (6.6.37)
or
Ra, = 47* = 39.48 (6.6.38)

6.6.5 Possible convection patterns

This is similar to Benard’s problem which has been exhaustively studied theoretically and
experimentally. There are many possibilities. Let us consider the lowest mode only with
j=1

2-Dimensinal Rolls : (¢ = m,m = 0)

Take

w = cosTxsin Tz (6.6.39)

then from mass conservation,
u = —sinmrcos Tz (6.6.40)



The dimensionless wavelength is L, = L, = 2. Along lines x = 0,£n,n =1,2,3,4,...,u =0
but w # 0. Along x = 0,£2m, w > 0, hence fluid rises vertically. Along x = £2m — 1,
w < 0 hence fluids sinks vertically. Along z = 0and 1,w = 0. On the bottom (2 =0), u > 0
while on the top (z=1),if 0 <z < 1,2 <z <3,4<x<5,... The streamlines are shown
in Figure 6.6.2.
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Figure 6.6.2: Rolls in a period

Experimetal images of rolls in a pure fluid (Benard problem) is shown in Figure 6.6.3.
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Figure 6.6.3: Rolls in a pure fluid layer heated from below. From van Dyke: An Album of
Fluid Motion

Rectangular cells: (¢ =m = 7//2).

Ty .
W = COS —= oS —=sin 1z (6.6.41)
V2 V2
From the z component of the vorticity equation (6.6.14),
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X
2



and from continuity

ou n v Ow
or oy Oz
By cross differentiation, we get
0%u N 0?u 0w 72
=— COSTTZ
ox?  0y? 020y 2\/_ \/_ \/_
and
v 0% 0w 72 Tro, T
— = = —— C0s — sin — cos Tz

@4_83;2__8281'—2\/5 V2 V2
These are easily solved to give

1 . 7wz Y
U = ———=8Iin — COS —= COS T2

V2 V2 V2
and

V= ——COS—SIH—COSWZ

VRN

The streamlines in a horizontal plane is shown in Figure 6.6.4.
Hexagonal cells: See Chandrasekhar. See Figure 6.6.5.
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The streamlines of the motion in the horizontal plane are determined
by the equation

sin(2mz/ L,) [ cos(2my/ L,)] (246)
cos(2mx/ L) |[sin(27y; L,)] B

Fig. 5. The streamlines in the horizontal plane for a rectangular cell.

Fig. 6. The streamlines in the horizontal plane for a square cell.

Figure 6.6.4: Rectangular and square cells in a pure fluid heated from below. From Chan-
drasekhar
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Figure 6.6.5: Hexagonal cells in a pure fluid headted from below. From van Dyke




