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6-5g-plume-L.tex May 11, 2003

R..A.Wooding, (1963), J Fluid Mech. 15, 527-544.
C. S. Yih, (1965), Dynamics of Nonhomogeneous Fluids, Macmillan.
D. A. Nield and A. Bejan, (1992), Convection in Porous Media. Springer-Verlag.

Consider a steady, two dimensional plume due to a source of intense heat in a porous
medium. From Darcy’s law:
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where k denotes the permeability, and
Iz dp
Pw=-2£_ 5.2
LU =5 (6.5.2)

These are the momentum equations for slow motion in porous medium. Mass conservation
requires
Uy +w, =0 (6.5.3)

Energy conservation requires
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denotes the thermal difusivity.
Equation of state:
p=po(1—=pB(T-Tp)) (6.5.6)

Consider th flow induced by a strong heat source. Let
T-Ty=T, p=p.+yp
where pg is the hydrostatic pressure satisfying

O

Eqn. (6.5.2) can be written
p op' :
—W = —— 1" 6.5.7
LW =g+ gl (6.5.7)



6.5.1 Boundary layer approximation

Eliminating p’ from Eqns. (6.5.7) and (6.5.1), we get

%@%—Ungmﬂﬂ
Let v be the stream funciton such that
U=, w=—Y,
then
Bou + s = —LPPE (6.5.8)

For an intense heat source, we expect the plume to be narrow and tall. Let us apply the
boundary layer approximation and check its realm of validity later,

u << w g > g
’ ox 0z
hence
wzx = _pOBkaI
1
or .
¢%%—g%lT, (6.5.9)

which is the same as ignoring dp’/0z in Eqn. (6.5.7).
This can be confirmed since u < w 9p’/0x ~ 0, p’ inside the plume is the same as that
outside the plume. But
o’
0z
outside the plume, hence dp’/0z = 0 inside as well.
Applying the B.L. approximation to Eqn. (6.5.4)
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uT! +wT! =T, (6.5.10)
Using the continuity equation we get
(uT"), + (wT"), = aT,,.

Integrating across the plume,

a [~ .,
E/ wl'dr =0 (6.5.11)

since T = 0 outside the plume. It follows that
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pOC/ wT'dx = —pOC/ t, T'dz = @) = constant. (6.5.12)
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6.5.2 Normalization

Let us take

WB
r=DBr, z2=Hz u= — 0w = Ww, T' — ATH (6.5.13)

where H, B, AT and W are to be determined to get maximun simplicity. We then get from
the momentum equation,

_ = gpoPAT
= T = —79’
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from the energy equation,
aH
uby + Wz = ———0zz,
ulz + w B
and from the total flux condition,
pOCWBA/ whdr = Q)
Let us choose SAT
9Po
— =1 6.5.14
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and
poCW BAT = Q, (6.5.16)

which gives three relations among four scales, B, H, W, AT. Then

W =1y = —0, (6.5.17)
from the energy equation,
and from the total flux condition,
/ whdzr =1 (6.5.19)
In addition we require that
w(+oo,z) =0, O(£oo,2)=0 (6.5.20)
ow(0, z)
0.2)=—""2 =0 = 0. 6.5.21
u(0,5) = 25 —0, (6:5.21)

From here on we omit overhead bars in all dimensionless equations for brevity.



6.5.3 Similarity solution

Now let
T =Nz 2= N =Y 0=\
From Eqn. (6.5.17)
o [OY" d
AT = -\
(5)
For invariance we require,
c—a=d. (6.5.22)
From (6.5.19)
a *
—/ i dg* \emotetd —
Ox*
therefore,
a+d=0. (6.5.23)
From Eqn. (6.5.18)
)\chdfafb — )\d72a.
implying,
c+a—-0b=0. (6.5.24)
Finally
c:g, d:—g, bzéa.
2 2 2
In view of these we introduce the following similarity variables,
x _
n= g v=2"1), 0=2"""hn). (6.5.25)
Note that at the center line n =0
w= —, o< 23 (0) (=) ~ 273 F(0) ~ 2713 (6.5.26)
0 o< 2~ /3h(0) (6.5.27)
and
box 223 (6.5.28)

Thus the velocity and temperature along the centerline decay as z~/? and the plume width

grows as 2%/3.

Substituting these into Eqns. (6.5.

and

17) and (6.5.18), we get, after some algebra

df
—% =h (6.5.29)
d d*h



The boundary conditions are,

o o o o

Integrating Eqn. (6.5.30), we get
fh=23n.

Using Eqn. (6.5.29), we get
i =3f"
Integrating again, we get
—6f" = fi - f*
where fo = fmax. Let f = —foF, then

(w(0, 2) = Winaz)

1—F?) =6F
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which can be integrated to give
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Solving for F', we get
fo/3 _1q f
_ ¢ _ Jon
B

What is fo? Let us use Eqn. (6.5.29)

—/mfﬁhmr=/m00wn=1

s dn .
since )
f=—foF" = —%sechz%
and

h=—f.
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Therefore,
2\ 2 poo 3 [
(B o () [
Since o0
/ sech®zdz = 4/3.
we get fo!
9\ /3
. (5) (6.5.32)
The solution is 13 1/3
fo (g) ol (g) g (6.5.33)
and 2/3 1/3
e (g) coch? (g) g (6.5.34)

Computed results are given in Figures.
RemarkChecking the boundary layer approximation.

v o P L5/3

a2 "% B2
T ~ 5513 @ ~ T3
02 T 022

hence for large z, B. L. approximation is good.

6.5.4 Return to physcial coordinates

Start from -
=25 (6.5.35)
% — ) (6.5.36)
2130 = h(n) (6.5.37)
Then / 2/3
z/B H x
TG HRR T ( B ) <22/3> (6.5.38)

By eliminating H and AT from(6.5.35) and (6.5.37), we get

_ [QgB
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FiGURE 63. Pattern of two-dimensional convection in a porous medium from a
boundary source.

Figure 6.5.1: Theoretical solution for a geothermal plume due to Yih

From (6.5.36), we get

It follows that

Now

H_W _ 1 /Qg8
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(6.5.39)

(6.5.40)
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Figure 5.19 Dimensionless temperature profiles for plume rise above a horizontal
line source of heat in a porous medium (Lee, 1983, Cheng, 1985a, with
permission from Hemisphere Publishing Corporation).

Figure 6.5.2: Comparison of theory and experiment. From Nield and Bejan

It can be shown that

HY/3 1 HN\"? 1 [ c\"
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c
which depends on the fluid properties and the given heat source strength.
Also
2130 = h(n) = (H2)"PATT” = (H'3AT) 3T (6.5.41)
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We can show that




which also depends on the fluid properties and the given heat source strength.



