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Various factors can be crucial to hydrodynamic instability.: shear, gravity, surface tension,
heat, centrifugal force, etc. Some instabilities lead to a different flow; some to turbulence.

We only discuss the linearized analysis of instability of a few sample problems. More
examples will be discussed in later chapters.

5.1 Kelvin-Helmholz Instability for continuous shear

and stratification

5.1.1 Heuristic reasoning

Due to viscosity, shear flow exists along the boundary of a jet, a wake or a plume . On the
interface of salt and fresh water, density stratification further comes into play. When will
dynamic instability occur?

Refering to Figure 5.1.1, Consider two fluid parcels, each of unit volume, at levels z and
z +dz. Let their positions be interchanged. To overcome gravity, the force needed to lift the
heavier fluid parcel by η is

g [ρ(z) − ρ(z + η)] = −g
dρ

dz
η.

Work needed to lift the heavier parcel by dz is

−g
dρ

dz

∫ dz

0
ηdη = −1

2
dρ dz.



2

Figure 5.1.1: Exchanging fluid parcels in a stratified shear flow

Similarly, the work needed to push the light parcel down by dz is −1
2
gdρdz. Therefore the

total work needed is

−gdρ dz.

Before the exchange, the total kinetic energy is

1

2
ρ[U2 + (U + dU)2]

where Boussinesq approximation is used. After the exchange, the parcels mix with the
surrounding fluid and attain the average velocity

(U + U + dU)/2 = U + dU/2

Therefore the total kinetic energy is

ρ(U + dU/2)2

The available kinetic energy is the difference between the kinetic energies before and after
the exchange.

ρ

2

{

U2 + (U + dU)2 − 2(U + dU/2)2
}

=
ρ

4
dU2.

If the net available kinetic energy exceeds the work needed for the exchange, the disturbance
will grow and the flow will become unstable, i.e.,

ρdU2

4
> −gdρdz

Let the Richardson number be defined by

Ri ≡
−g

ρ

dρ

dz
(

dU
dz

)2 (5.1.1)
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Instabilty occurs if

1

4
> Ri ≡

−g

ρ

dρ

dz
(

dU
dz

)2 (5.1.2)

(Chandrasekar, 1961 ).

Remark: A slightly more accurate estimate can be made without Boussinesq approxima-
tion. Before the exchange, the total kinetic energy is

1

2

{

ρU2 + (ρ + dρ)(U + dU)2
}

.

After the exchange, the parcels mix with the surrounding fluid and attain the average velocity

(U + U + dU)/2 = U + dU/2

but their densities are preserved. Therefore the total kinetic energy is

1

2
(ρ + ρ + dρ)(U + dU/2)2

The available kinetic energy is the difference between the kinetic energies before and after
the exchange.

ρ

4
dU2 − UdUdρ +

1

4
dρdU2

Ignoring the last term, the necessary condition for instability is

ρ

4
dU2 − UdUdρ +

1

4
dρdU2 > −gdρdz

or

1

4
−

1
ρ

dρ

dz

1
U

dU
dz

+
1

4

dρ

ρ
>

−g

ρ

dρ

dz
(

dU
dz

)2

On the left-hand side, the third term is negligible compared to the first. The ratioi of the
second term on the left to the term on the right is

U

g

dU

dz
∼ U2

gL

where L is the length scale of stratification. As long as the last ratio is very small, the
criterion Ri < 1/4 still holds.

Let us confirm the heuristic result but the linearize theory.
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5.1.2 Linearized instability theory for continuous shear and strat-
ification.

Let the total flow field be (U +u,w, P +p, ρ̄+ ρ̃) where U, P, ρ̄ represent the backgraound flow
(u,w, p, ρ̃) the dynamical perturbations of infinitesimal magnitude. The linearized governing
equations are: continuity:

ux + wz = 0 (5.1.3)

incompressiblity:

ρ̃t + Uρ̃x + wρ′ = 0 (5.1.4)

where

ρ′ ≡ dρ

dz

and momentum conservation:

ρ (ut + Uux + wUz) = −px (5.1.5)

ρ (wt + Uwx) = −pz − ρ̃g. (5.1.6)

where ρ̃ denotes the perturbation of density from ρ̄.
Let us follow Miles and introduce a new unknown η by enoting ρ̃ = −ρ′η, then Eqn.

(5.1.4) gives

ηt + Uηx = w (5.1.7)

Consider

η = F (z)eik(x−ct), (5.1.8)

where

c = ω/k = cr + ici.

For fixed k the flow is unstable if ci > 0, since

e−ikct = e−ikcrtekcit.

Let

{u,w, p, ρ̃} = {û(z), ŵ(z), p̂(z),−ρ′F (z)} eik(x−ct) (5.1.9)

We get from Eqn. (5.1.7)

ŵ = ik(U − c)F, , (5.1.10)

from Eqn. (5.1.3)

û = −[(U − c)F ]′, (5.1.11)

and from Eqn. (5.1.5)

ρ (ik(U − c)û + U ′[ik(U − c)F ]) = −ikp̂
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or, after mlultiplying by ik, and using (5.1.11 ),

ρ[(U − c)(−)[(U − c)F ]′ + U ′(U − c)F ] = −p̂,

hence
p̂ = ρ(U − c)2F ′. (5.1.12)

Substituting Eqns. (5.1.9), (5.1.10), (5.1.11) and (5.1.12) into Eqn. (5.1.6), we get

[

ρ(U − c)2F ′

]

′

+ ρ
[

N2 − k2(U − c)2
]

F = 0, (5.1.13)

where N is the Brunt-Väisälä frequency defined by

N2 = −g

ρ

dρ

dz
. (5.1.14)

Let the top and bottom be rigid walls, then w = 0. Hence,

η = 0 i.e., F = 0, z = 0, d. (5.1.15)

The argument is unchanged if the top and bottom are at z = ∞ and z = −∞. Equations
(5.1.13) and (5.1.15) consititute an eigenvalue problem where c = cr + ici is the eigenvalue.
If ci > 0, instability occurs.

5.1.3 A necessary condition for instability (J.W. Miles, L. N.
Howard).

For brevity we set W = U − c. Miles further introduce G =
√

WF , so that Eqn. (5.1.13)
becomes

(ρWG′)
′ −

[

1

2
(ρU ′)

′

+ k2ρW +
ρ

W

(

1

4
U ′2 − N2

)]

G = 0. (5.1.16)

The boundary conditions are
G(0) = G(d) = 0. (5.1.17)

Multiplying Eqn. (5.1.16) by G∗ and integrating by parts

∫ d

0

{

ρW
(

| G′ |2 +k2 | G |2
)

+
1

2
(ρU ′)

′ |G|2 + ρ
(

1

4
U ′2 − N2

)

W ∗ | G

W
|2

}

dz = 0. (5.1.18)

We now seek the necessary condition for instability, i.e., ci 6= 0. Writing

W = (U − cr) − ici W ∗ = (U − cr) + ici

and substituting these in (5.1.18), we get

∫ d

0

{

ρ(U − cr − ici)
(

| G′ |2 +k2 | G |2
)
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+
1

2
(ρU ′)

′ |G|2 + ρ
(

1

4
U ′2 − N2

)

(U − cr + ici) |
G

W
|2

}

dz = 0.

Separating the imaginary part, we get, if ci 6= 0,

∫ d

0
ρ

(

(| G′ |2 +k2 | G |2
)

dz +
∫ d

0
ρ

(

N2 − 1

4
(U ′)2

)

| G

W
|2 dz = 0.

For this to be true it is necessary that N2 < 1
4
(U ′)2 or

Ri =
N2

(U ′)2
=

−g

ρ̄

dρ̄

dz
(

dU
dz

)2 <
1

4
. (5.1.19)

This confirms the heurisic result as the necessary (but not sufficient) condition for instabililty
(J.W. Miles, L. N. Howard).

Remark on Brunt-Väisälä frequency:
Brunt-Väisälä frequency is a parmeter characteristic of a stratified fluid. It is the natural

frequency of oscillations of a fluid parcel displaced slightly from equilibrium. Let a fluid parcel
of unit volume be moved up by a small distance η. The parcel is subject to a downward
gravitational force equal in magnitude to −gρ̄′η (i.e., the upward force gρ̄′η needed to lift it
up), while the inertial force is ρd2η/dt2. Newton’s law requires

ρ̄
d2η

dt2
= gρ̄′η, or ρ̄

d2η

dt2
− gρ̄′η = 0. (5.1.20)

Hence the natural frequency is the Brunt-Väisälä frequency:

N =

√

−gρ̄′

ρ̄
(5.1.21)


