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4.7 Dispersion in an oscillatory shear flow

Relevant to the convective diffusion of salt and /or pollutants in a tidal channel, and chemicals
in a blood vessel, Let us examine the Taylor dispersion in an oscillating flow in a pipe. Let
the velocity profile be given,

u="Us(r)+R [Uw(r)e’i“’t} , 0<r<a. (4.7.1)
The transport equation for the concentration of a solvent is recalled
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Assume the pipe to be so small that diffusion affects the whole radius within one period or
so, i.e.,
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We shall be interested in longitudinal diffusion across L much greater than a. Let U, be the

scale of U and
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Equation (4.7.2) is nomalized to
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Let the Péclét number be of order unity Pe = Ua/D = O(a/L)°, (4.7.5) becomes
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with the boundary conditons
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For brevity we drop the primes from now on.



4.7.1 Multiple scale analysis-homogenization

For convenience let us repeat the perturbation arguments of the last section.
There are three time scales : diffusion time across a, convection time across L, and
diffusion time across L. Their ratios are :
> L L*
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the smallest time scale being comparable to the oscillation period. Upon introducing the
multiple time coordinates
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to=t,t, = et, ty = *t (4.7.10)
and the multiple scale expansions.
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where C; = C;(x,r,t,t1,t2), then the perturbation problems are
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Ignoring the transient that dies out quickly and focusing attention to the long-time
evolution, i.e., t; = O(1), the solution at O(e") is !

CO = Co($,t1,t2), (4718)

1Strictly speaking the solution is
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where k], is the n—th root of Jj(ka) = 0. The series terms die out quickly in o > 1 and ¢; < 1, leaving
the limit Cpp which is independent of ¢y. (Dr. E. Qian,1993)



At O(e), let the known velocity be

u=Us(y) + RN (Uw(y)e_mto> (4.7.19)
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Denoting the period average by overbars,
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Let us now integrate (or average ) across the pipe, and get
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where angle brackets denote averaging over the cross section.
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Now subtract (4.7.23) from (4.7.20)
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is the velocity nonuniformity
Now (' is governed by a linear equation, we can assume the solution to be proportional
to the forcing and composed of a steady part and a time harmonic part, i.e.,
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and L d
- r—= OB, =
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with the boundary conditions
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After solving for B, B, we go to O(e?), i.e., (4.7.16) :
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which is a linear PDE for Cy. From(4.7.26) and (4.7.23) we find
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It follows that
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Taking the time average over a period,
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Averaging (4.7.33) across the pipe, we get
2
% — EE) Co
3752 81’2
with

E=1-Pé {(USBS> + ;waB;;)}

9%*Cy
0x?

(4.7.28)

(4.7.29)

(4.7.30)

(4.7.31)

(4.7.32)

(4.7.33)

(4.7.34)

(4.7.35)

(4.7.36)



which is the effective diffusion coefficient or the dispersion coefficient. The first part is of
molecular origin; the second part is due to fluid shear.
Finally we add (4.7.23) and (4.7.35) to get:
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This describes the convective diffusion of the area averaged concentration, which is cer-
tainly of practical value.

After the perturbation analysis is complete, there is no need to use multiple scales; we
may now write

aCy aCy 0%Cy
in dimensionless form, or,
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in physical form. This equation governs the convective diffusion of the cross-sectional average,
after the initial transient is smoothed out.

4.7.2 Aris’ solution for a cicular pipe

R. Aris (1960, Proc Roy. Soc. Lond. 259, pp 370-376) has worked ouyt the solanwers for
a flow forced by a periodic pressure gradient in a circular pipe of radius a. The analysis is
carried out by using Bessel functions; only the solution is cited here.

For the pressure gradient
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First the velocity profile is found. Denoting
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The dispersion corfficient is found to be
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Ficure 1. The coefficient function L..().

Figure 4.7.1: The function L,(y), Aris, 1960.

we can rewrite L(x,y) = L(oy,y) = L,(y) so that L is a function of y and the Schmitt
number o, as plotted in Figure 4.7.1.

Homework: Find the dispersion coefficient E in the oscillatory flow in a circular pipe
and carry out the necesary numerical calculations.
Homework (mini research) : Find the dispersion coefficient E in the oscillatory flow in
a blood vessel with elastic wall.



