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4.6 Selective withdrawl of thermally stratified fluid
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We now extend the analysis in Chapter II on isothemal withdrawl and consider the slow
and steady flow of a thermally stratified fluid into a two- dimensional line sink.
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Freure 3. Viscous stratified flow towards a line sink: the withdrawal layer.

Figure 4.6.1: Sketch of velocity profiles across the layer draining int to a line sink, from Koh,
1966.

Thermal diffusion and convection now comes into play.



4.6.1 Governing equations

We begin with the general law of mass conservation
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In environmental problems the range of temperature variation is within a few tens of degrees.
The fluid density varies very little and obeys the following equation of state

p=po[1— B(T = T)] (4.6.2)

where T" denotes the temperature and 3 the coefficient of thermal expansion which is usually

very small. Hence
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It follows that (4.6.1) is well approximated by
V-¢g=0 (4.6.3)
which means that water is essentially incompressible. In two dimensions, we have
Uy +w, =0 (4.6.4)

Next, energy conservation requires that

T
2ﬁ+@“VT:DV%” (4.6.5)

Let
T=T+T (4.6.6)

where T represents the static temperature when there is no motion, and 7" the motion-
induced temperature variation. Therefore,

T-T,=(T(z) = T,) + T'(x,2,t) (4.6.7)

and
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The static temperature must satisfy

+¢-VT+q-VT' = DV?*T + DV?*T’ (4.6.8)

VT =0 (4.6.9)



In a large lake with depth much smaller than the horizontal extent, the static temperature

is essentially uniform horizontally. The Laplace equation reduces to
d*T dT
i 0, implying o= constant (4.6.10)

The dynamic part is then gorvened by
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The exact equations for momentum balance are, in two dimensions,
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where p denotes the static part, which must satisfy
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Taking the differenece of the two preceding equations, we find the equation for the dynamic
part
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4.6.2 Approximation for slow and steady flow

For sufficiently slow flows, inertia terms can be ignored. Expecting that vertical motion
is suppressed, we further assume that the vertical length scale § is much smaller than the
horizontal scale L, so that 0/0x < 0/0z. The 2-D momentum equations can then be
simplified to
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Similarly we can linearize (4.6.11) to get
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Together (4.6.4), (4.6.18), (4.6.16) and (4.6.17) complete the lineaized governing equations.



Eliminating p from (4.6.16) and (4.6.17), we get
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we can omit the second term on the left of (4.6.19). In terms of the stream function defined
by

Since

u=1,, w=—1Y, (4.6.20)
(4.6.19) becomes
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Equation (4.6.18) can be written as
T 82T’
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We now have just two equations for two unknowns ¢ and 7”. The boundary conditions are
T'u,w |0, as 2z +oo (4.6.23)

or
Y, 0. T |0, as z7 oo (4.6.24)

Let the volume rate of withdrawal be prescribed, we must then require the integal condition:
/ udz = —q, implying ¢ (z,z = 00) — Y(z,2 = —00) = g. (4.6.25)
—0o0

4.6.3 Normalization

Let
Yp=qu, T=TT" x=1La", z=0z" (4.6.26)

Physically it is natural to choose the characteristic depth of thermal gradient as the global

length scale L:
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The scales T, and 0 are yet to be specified.
The dimensionless (4.6.21) reads
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hence we choose

so that

Similarly, (4.6.22) becomes
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after normalization, suggesting the choice of
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Eqgs. (4.6.28) and (4.6.30) can be solved to give the scales

so that
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The flux condition is normalized to

P (00) — ¢ (—o0) =1
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4.6.4 Similarity solution

Let us try a one-parameter similarity transformation
=M%, z=X\z =X, T =)\T (4.6.35)

The exponents a, b, c and d will be chosen so that the boundary value problem is formally
the same as the original one To achieve invariance of (4.6.34), we set ¢ = 0. In addition we
set
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for (4.6.31). Hence, d —a = —4b and a — 2b = —d implying
b=—d, a=3b=-3d (4.6.36)

These relationships among the exponents suggest the following new similarity variables:

h(¢)

b=f0), T=_3j (4.6.37)
with B
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It is easily verified that these variables are invareiant under the similarity transformation.
Carrying out the differentiations
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we get from (4.6.29)
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we get from (4.6.31)
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The boundary conditions are transformed to

f(o0) = f(—00) = —1 (4.6.41)

and
LR 10 as ¢ — Foo (4.6.42)

Mathematically, the similarity transformation has enabled us to reduce the boundary
value problem involving partial differential equations to one with ordinary differential equa-
tions (4.6.39), (4.6.40), (4.6.41), and (4.6.42). As long as = and z lie on the parabola
z = const z'/3, ¢* and T*2*'/? are the same. From the transformation, we can also deduce
that the boundary of the zone affected by the flow is a parabola,

5 ~ /3 (4.6.43)
Along the centerline z = { = 0, the velocity varies as
Umax ~ thy ~ z~ '/ (4.6.44)

and the temperature varies as
Tmax ~ z'/3 (4.6.45)

The boundary value problem can now be solved by numerical means (such as Runge-
Kutta). Numerical results by Koh (1966, Fig. 4) are shown in Figure (4.6.2).

In Koh (1966), stratification in fluid density is associated with the variation of concen-
tration of a diffusive substance instead of temperature. The fluid density is governed by
a diffusion equation formally the same as that for temperature here. To use his numerical
results, fo, ho in his plots are replaced by our f,—h shown here. Extensive discussion on

experimental confirmation as well as the three dimensional theory for a point sink can be
found in Koh.
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Ficure 4. (a) The non-dimensional stream function and its derivatives for the two-
dimensional case. (b) The non-dimensional density function and its first derivative for the
two-dimensional case.

Figure 4.6.2: Temperature and velocity profiles across the layer draining into a line sink,
from Koh, 1966.



