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4.4 Buoyant plume from a steady heat source

[Reference|: Gebhart, et. al. (Jalluria, Maharjan, Saammakia), Buoyancy-induced Flows
and Transport, 1988, Hemisphere Publishing Corporation

Let T =T — T = temperature variation where T, is a constant (no ambient stratifica-
tion). For a strong enough heat source, we expect the boundary layer behavior,
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The boundary layer equations are
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Rewrite (4.4.3) as
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after using continuity. Now integrating the last equation from r = 0 to r = oo
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Using the boundary conditions, we get or
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Note that
/ 2mrdr upCT = rate of buoyancy flux
0
= rate of heat flux
= ((given rate of heat release at = 0)
therefore,
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This is a boundary condition.
Let the stream function 1 be defined by
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(4.4.1) is automatically satisfied. From the momentum equation:
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From the energy equation
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and from the buoyancy flux condition
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Try a similarity solution with the one-parameter transformation
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From (4.4.10),
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and from (4.4.12)
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From these three equations we get

We leave it as an exercise to show that the similarity variable can be taken to be
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and the similarity solutions to be
Y =xzF(n), and T =z"'G(n)
After much algebra, and noting
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we get from (4.4.10)
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Before integrating, let us normalize :
n=ai, F=~F, G=o0oG.
It follows from (4.4.18) that
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where prime denotes d/dn. Setting v = v and
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Similar normalization of (4.4.19) gives
kao , - YO, - =
— (G + —(FG) =0 4.4.24
@y + 2 (FG) (1.4.21)
. which can be simplified to B o
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P.= 7= Prandtl Number (4.4.26)

For water v = 107%cm?/s,k = 1.42cm?/s, hence Pr = 7. For air v = 0.145cm?/s, k =
0.202c¢m? /s, hence Pr = 0.75.
We now integrate (4.4.25)to give
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Since 1 (x,0) = 0, we must have F'(0) = 0 ; the constant above is zero.
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Equation (4.4.27) can be written
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Substituting Eqn. (4.4.28) into Eqn. (4.4.23), the resulting equation for F' must be integrated

numerically. )
Now let us find the boundary condtions for F' or F.



Eqn. (4.4.8 ) becomes
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is the boundary condition for F' and G. Now (4.4.31) defines o, the scale of G. Note that
larger () implies larger o and smaller . Thus a stronger heat source leads to a greater
centerline temperature and a thinner plume. Also,
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The numerical results by Mollendorf & Gelhart, 1974, are shown in Figs. 4.4.1, for
various Prandtl numbers. A schlierian photograph due to Gebhart (copied from Van Dyke
An Album of Fluid Motion) is hown in Figure fig:plumeVD.

Remark:
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Along the centerline u(z,0) = (%)0 = constant depending on P,. Why? Buoyancy acceler-

ation is counteracted by entrainment.



Remark: Let the radius of the plume be a which varies as
o~ /2

1

This is consistent with the behavior that u ~ 2°, and T ~ 21, since

ul = Q
On the other hand the mass flux rate is
wa® ~ x

and the momentum flux rate is

u2a2 ~ T

hence both approach zero at the source. Thus a plume is the result of energy source, not of
mass or momentum.



1.5

\

- \\T\

0

Wk

10
Figure 4.4.1 Velocity profiles in an axisymmetric plume. (From Mollendorf and Gebhart, 1974. )
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Figure 4.4.2 Temperature profiles in an axisymmetric plume. (From Mollendorf and Gebhart, 1974.}



203, Plane conweetion plume rising

| from a heated horizontal wire. A thin
wire & im. long is heated elecrrically in

| armospheric gir. Each fringe in this inwee
ferogram sepiesents a temperaure differ
eice of 14*C, The reference grid wires are
spaced ¥ by 4 dn, In goed accord with sell
similar solutions of the houndary-layer
eqquations, the width of the phame grows oz
the Yi-power of height. Gebhar, Fera &
Schowr 1970

Figure 4.4.2: A 2D thermal plume from a line heat source. From Van Dyke, photo by
Gebhart, Pera and Schoor 1970,



