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4.4 Buoyant plume from a steady heat source

[Reference]: Gebhart, et. al. (Jalluria, Maharjan, Saammakia), Buoyancy-induced Flows

and Transport, 1988, Hemisphere Publishing Corporation

Let T̃ = T − T∞ = temperature variation where T∞ is a constant (no ambient stratifica-
tion). For a strong enough heat source, we expect the boundary layer behavior,
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The centerline r = 0 is an axis of symmetry,
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Far outside the plume r → ∞

u→ 0 and T → T∞, (T̃ → 0) (4.4.5)
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after using continuity. Now integrating the last equation from r = 0 to r = ∞
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Using the boundary conditions, we get or

∫
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0

2πruT̃dr = constant

Note that
∫
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2πrdr uρCT̃ = rate of buoyancy flux

= rate of heat flux

= Q(given rate of heat release at x = 0)

therefore,
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This is a boundary condition.
Let the stream function ψ be defined by

ru =
∂ψ

∂r
, rv = −

∂ψ

∂x
(4.4.9)

(4.4.1) is automatically satisfied. From the momentum equation:
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From the energy equation
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and from the buoyancy flux condition

Q = 2πρC
∫

∞

0

rdr

(

1

r

∂ψ

∂r

)

T̃ (4.4.12)



3

Try a similarity solution with the one-parameter transformation

x− λax∗, r = λbr∗, ψ = λcψ∗, T̃ = λdT ∗

From (4.4.10),
λ2c−4b−a = λ2c−4b−a = λd = λc−4b (4.4.13)

from (4.4.11)
λc+d−2b−a = λd−2b (4.4.14)

and from (4.4.12)
λc+d = 1 (4.4.15)

From these three equations we get
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a
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a
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2
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d

a
= −1.

We leave it as an exercise to show that the similarity variable can be taken to be

η =
r
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(4.4.16)

and the similarity solutions to be

ψ = xF (η), and T̃ = x−1G(η) (4.4.17)

After much algebra, and noting
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we get from (4.4.10)

νF ′′′ +

(

F ′

η

)

′

(F − ν) + gβηG = 0 (4.4.18)

and from (4.4.11)
k(ηG′)′ + (FG)′ = 0 (4.4.19)

.
Before integrating, let us normalize :

η = αη̄, F = γF̄ , G = σḠ. (4.4.20)

It follows from (4.4.18) that
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where prime denotes d/dη̄. Setting γ = ν and

ν2

α3
= gβασ

which relates σ and α,

σ =
ν2

gβα4
(4.4.22)

we get
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Similar normalization of (4.4.19) gives
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α
(F̄ Ḡ)′ = 0 (4.4.24)

. which can be simplified to
(η̄Ḡ′)′ + Pr(F̄ Ḡ)′ = 0 (4.4.25)

. where
Pr =

ν

k
= Prandtl Number (4.4.26)

For water ν = 10−2cm2/s, k = 1.42cm2/s, hence Pr = 7. For air ν = 0.145cm2/s, k =
0.202cm2/s, hence Pr = 0.75.

We now integrate (4.4.25)to give

η̄Ḡ′ + PrF̄ Ḡ = constant

Since ψ(x, 0) = 0, we must have F̄ (0) = 0 ; the constant above is zero.

η̄Ḡ′ + PrF̄ Ḡ = 0 (4.4.27)

Equation (4.4.27) can be written

Ḡ′
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)

(4.4.28)

Substituting Eqn. (4.4.28) into Eqn. (4.4.23), the resulting equation for F̄ must be integrated
numerically.

Now let us find the boundary condtions for F or F̄ .
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Eqn. (4.4.8 ) becomes
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Therefore,
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Q
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Let us choose
Q

2πρCνσ
= 1 (4.4.31)

so that ∫

∞

0

dη̄ F̄ ′Ḡ = 1 (4.4.32)

is the boundary condition for F̄ and Ḡ. Now (4.4.31) defines σ, the scale of G. Note that
larger Q implies larger σ and smaller α. Thus a stronger heat source leads to a greater
centerline temperature and a thinner plume. Also,

u→ 0 as r → ∞

hence

u =
1

r
ψr =

F ′

η
=

ν

α2

F̄ ′

η̄
→ 0, as η ∼ η̄ → ∞

The radial velocity is, in general

v =
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F − η
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2

)

Since
v → 0 as η → 0,

we must have,
F (0) = 0.

Clearly
F̄ (η̄) = 0 as η̄ → 0 (4.4.33)

The numerical results by Mollendorf & Gelhart, 1974, are shown in Figs. 4.4.1, for
various Prandtl numbers. A schlierian photograph due to Gebhart (copied from Van Dyke
An Album of Fluid Motion) is hown in Figure fig:plumeVD.

Remark:

u =
1
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)

Along the centerline u(x, 0) =
(

F ′

η

)

0
= constant depending on Pr. Why? Buoyancy acceler-

ation is counteracted by entrainment.
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Remark: Let the radius of the plume be a which varies as

a ∼ x1/2

This is consistent with the behavior that u ∼ x0, and T̃ ∼ x−1, since

a2uT̃ = Q

On the other hand the mass flux rate is

ua2
∼ x

and the momentum flux rate is
u2a2

∼ x

hence both approach zero at the source. Thus a plume is the result of energy source, not of
mass or momentum.
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Figure 4.4.2: A 2D thermal plume from a line heat source. From Van Dyke, photo by
Gebhart, Pera and Schoor 1970,


