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CHAPTER 4. THERMAL EFFECTS IN FLUIDS
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4.1 Heat and energy conservation

Recall the basic equations for a compressible fluid. Mass conservation requires that :

ρt + ∇ · ρ~q = 0 (4.1.1)

Momentum conservation requires that :

ρ (~qt + ~q∇ · ~q) = −∇p + ∇·
=

τ +ρ~f (4.1.2)

where the viscous stress tensor
=

τ has the components

(
=

τ
)

ij
= τij = µ

(

∂qi

∂xj

+
∂qi

∂xi

)

+ λ
∂qk

∂xk

δij

There are 5 unknowns ρ, p, qi but only 4 equations. One more equation is needed.

4.1.1 Conservation of total energy

Consider both mechanical ad thermal energy. Let e be the internal (thermal) energy per
unit mass due to microscopic motion, and q2/2 be the kinetic energy per unit mass due to
macroscopic motion. Conservation of energy requires

D

Dt

∫∫∫

V
ρ

(

e +
q2

2

)

dV rate of incr. of energy in V (t)

= −

∫∫

S

~Q · ~n dS rate of heat flux into V

+
∫∫∫

V
ρ~f · ~q dV rate of work by body force

+
∫∫

X

~Σ · ~q dS rate of work by surface force

Use the kinematic transport theorm, the left hand side becomes

∫∫∫

V
ρ

D

Dt
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)
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Using Gauss theorem the heat flux term becomes

−

∫∫

S
QinidS = −

∫∫∫

V

∂Qi

∂xi

dV

The work done by surface stress becomes
∫∫

S
Σjqj dS =

∫∫

S
(σjini)qj dS

=
∫∫

S
(σijqj)ni dS =

∫∫∫

V

∂(σijqj)

∂xi

dV

Now all terms are expressed as volume integrals over an arbitrary material volume, the
following must be true at every point in space,

ρ
D

Dt

(

e +
q2

2

)

= −
∂Qi

∂xi

+ ρfiqi +
∂(σijqi)

∂xj

(4.1.3)

As an alternative form, we differentiate the kinetic energy and get

ρ
De

Dt
+ ρqi

Dqi

Dt
︸ ︷︷ ︸

= ρfiqi + qi

∂σij

∂xj
︸ ︷︷ ︸

−
∂Qi

∂xi

− p
∂qi

∂xi

+ τij

∂qi

∂xj

(4.1.4)

Becasue of momentum conservation, the terms in the underbraces cancel, leaving

ρ
De

Dt
= −

∂Qi

∂xi

− p
∂qi

∂xi

+ τij

∂qi

∂xj

(4.1.5)

We must now add Fick’s law of heat conduction

Qi = −K
∂T

∂xi

(4.1.6)

where K is the heat conductivity, and the following equations of state

e = e(p, T ) (4.1.7)

ρ = ρ(p, T ) (4.1.8)

Now there are 10 unknowns qi, Qi, ρ, p, e, T , and 10 equations: 1 from (4.1.1), 3 from (4.1.2),
1 from (4.1.5), 3 from (4.1.6), 1 from (4.1.7) and 1 from (4.1.8).

4.1.2 Equations of state:

For a perfect gas:
e = CvT (4.1.9)

p = ρRT, where R = Cp − Cv. (4.1.10)
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The specific heats Cv (constant volume) and Cp (constant pressure) are measured in Joules
/kg -dyne.

For a liquid:
e = CT (4.1.11)

ρ = ρ̄o

(

T̄o, p̄o

)

+
∂ρ

∂p

∣
∣
∣
∣
∣
T

∆p +
∂ρ

∂T

∣
∣
∣
∣
∣
p

∆T + · · ·

where ρ̄o, T̄o, p̄o are some constant reference density, temperature, and pressure respectively,
while ∆p = p− p̄o and ∆T = T − T̄o. are the variations in pressure and temperature. These
variations are usually small in environmental problems. We define the thermal expansioin
coefficient β by :

β = −
1

ρ̄0

∂ρ

∂T

∣
∣
∣
∣
∣
p

=
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V̄0

∂V

∂T

∣
∣
∣
∣
∣
p

(4.1.12)

where V denotes the specific volume (volume per unit mass), and the bulk modulus 1/ε by

ε =
1

ρ̄0

∂ρ

∂p

∣
∣
∣
∣
∣
T

= −
1

V̄0

∂V

∂p

∣
∣
∣
∣
∣
T

(4.1.13)

ρ ∼= ρ̄o(1 − β∆T + ε∆p) (4.1.14)

For liquids
O(β) ∼ 10−3/oK, O(ε) ∼ 10−6/atm

Rewrite Eqn. (4.1.5)

ρ
De

Dt
+ ρqi

Dqi

Dt
= ρqifi + qi

∂σij

∂xj

+
∂

∂xi

K
∂T

∂xi

− p
∂qi

∂xi

+ τij

∂qi

∂xj

(4.1.15)

In summary, we have, for a perfect gas

ρCv

DT

Dt
= −p

∂qi

∂xi

+
∂

∂xi

K
∂T

∂xi

+ τij

∂qi

∂xj

(4.1.16)

and for an incompressible liquid

ρC
DT

Dt
=

∂

∂xi

K
∂T

∂xi

+ τij

∂qi

∂xj

(4.1.17)

Recall that

Φ = τij

∂qi

∂xj

(4.1.18)

is the rate of viscous dissipation. Thus the rate of change in internal energy is equal to the
sum of rate of pressure working to compress the fluid, viscous dissipation, and heat diffusion.
More will be said about the incompressiblilty of liquid later.


