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CHAPTER 4. THERMAL EFFECTS IN FLUIDS
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4.1 Heat and energy conservation
Recall the basic equations for a compressible fluid. Mass conservation requires that :
pe+V-pg=0 (4.1.1)
Momentum conservation requires that :
p(G+qV @) =—-Vp+V-T+pf (4.1.2)

where the viscous stress tensor 7 has the components

(7), =7 = (axj - ax) T A G

There are 5 unknowns p, p, ¢; but only 4 equations. One more equation is needed.

4.1.1 Conservation of total energy

Consider both mechanical ad thermal energy. Let e be the internal (thermal) energy per
unit mass due to microscopic motion, and ¢*/2 be the kinetic energy per unit mass due to
macroscopic motion. Conservation of energy requires
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Use the kinematic transport theorm, the left hand side becomes
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Using Gauss theorem the heat flux term becomes
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The work done by surface stress becomes
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Now all terms are expressed as volume integrals over an arbitrary material volume, the
following must be true at every point in space,
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As an alternative form, we differentiate the kinetic energy and get
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Becasue of momentum conservation, the terms in the underbraces cancel, leaving
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We must now add Fick’s law of heat conduction
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where K is the heat conductivity, and the following equations of state
e=ce(p,T) (4.1.7)
p=ppT) (4.1.8)

Now there are 10 unknowns ¢;, Q;, p, p, e, T, and 10 equations: 1 from (4.1.1), 3 from (4.1.2),
1 from (4.1.5), 3 from (4.1.6), 1 from (4.1.7) and 1 from (4.1.8).

4.1.2 Equations of state:

For a perfect gas:
e=C,T (4.1.9)

p=pRT, where R=C,—C,. (4.1.10)



The specific heats C,, (constant volume) and C), (constant pressure) are measured in Joules
/kg -dyne.
For a liquid:
e=CT (4.1.11)
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where p,, To, Do are some constant reference density, temperature, and pressure respectively,
while Ap = p —p, and AT =T —T,. are the variations in pressure and temperature. These
variations are usually small in environmental problems. We define the thermal expansioin
coefficient 3 by :
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where V' denotes the specific volume (volume per unit mass), and the bulk modulus 1/¢ by
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For liquids
O(B) ~1073/)°K, O(g) ~107%/atm
Rewrite Eqn. (4.1.5)
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In summary, we have, for a perfect gas
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and for an incompressible liquid
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is the rate of viscous dissipation. Thus the rate of change in internal energy is equal to the
sum of rate of pressure working to compress the fluid, viscous dissipation, and heat diffusion.
More will be said about the incompressiblilty of liquid later.



