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3.9 Impulsive motion of a blunt body and tendency for
separation

Ref: H. Schlichting, Boundary layer theory, p 400 ff.

As an example of unsteady boundary layer, let us consider the initial stage (U,T'/L < 1)
of a boundary layer due to the impulsive start of motion near a blunt body, see the sketch
in Figure 3.9.1.
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Figure 3.9.1: Boundary layer around a blunt body

Let us start with the boundary layer approximation and introduce a perturbation expan-
sion in powers of the small ratio U,T'/L,
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Equating the coefficients of (%) we get the first (leading) order perturbation equations
in normalized coordinates,

u + 0l =0, (3.9.6)
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subject to the initial conditions:
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and the boundary condtions
u =0 =0, y=0, Vi (3.9.9)
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Equating the coefficient of (UET

), we get the second order perturbation equations in
normalized coordinates,
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subject to the same initial and boundary conditions on the wall as the first order problem,
except that

W 4 (@O oWy = U, + u +o( (3.9.12)
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To return to physical variables, we need only add the coeficient v in front of the viscous
stress term wuy, in (3.9.7), and (3.9.12). The first order problem for the tangential velocity
is precisely the Rayleigh problem

uf = ull) (3.9.14)

subject to the initial conditions:
u =0, t=0, Yy (3.9.15)

and the boundary condtions
uWV=0. y=0, Vt (3.9.16)
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The solution is
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Integrating the continuity equation (3.9.6) we get
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To simply the notation we introduce
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The second-order approximation is
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subject to the initial and boundary conditions that
u?(y,0) =0, uP(y,t)=0 fory=0,00

The right hand side of (3.9.23) can be worked out so that
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A similarity solution is possible. Let us seek a one-parameter transformation,

U(2) — AaU(Q)/, t = )\th7 y = )\cyl

From (3.9.23) we get
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Note that x is just a parameter. Clearly a = b = 2¢ so that we can take
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Substituting (3.9.26) into (3.9.25), we get a linear ordinary differential equation

' 2nf = 4f = 4[(G)" = Gl — 1 (3.9.27)
subject to the boundary conditions that
f=0, n=0,00 (3.9.28)

The solution is not difficult (see Schlichting, eq. 15.43, p. 400).
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The solution is plotted in Figure 3.9.2.
The total solution is
u = Uerf(n) +tUU, f(n) (3.9.30)

Figure 3.9.2: Solution to the problem of impulsive start.

Separation
For a given U(z) when and where will separation first occur? Namely, when is
ou
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Let us use (3.9.30) for a crude estimate. Since
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It can be show n that at n = 0,
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Note that t;, > 0 only for U, < 0, i.e., a decelerated flow. This is a very crude and mathe-
matically illigitimate estimate since we are equating two terms of different order.
Neveltherless let us apply this result to the impulsive flow passing a circular cylinder
from the left. Let U, be the constant velocity at infinity and the polar angle # be measured
from the upstream stagnation point, then z = af where a is the radius, see Figure 3.9.3. It
is well known in the potential theory that the potential is

ty = (3.9.31)
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The tangential velocity along the cylinder » = a is
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or

U =2U,sin(m — 0) = 2U, sin(f) = 2U, sinz/a

The minimum ¢, occurs at the riear stagnation point, x = ma at which
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Note that the last condition indicates the illigitimacy of this estimate. Nevertheless we use
it here as an order-of-magnitude guide which may be improved by working out higher order
terms.

In offshore stuctures, wave induced oscillatory flows acound a pile can be separated and
hence affect the drag force on the pile. As an order estimate we take U, = wA where
w =frequency and A =wave amplitude. Hence there is no separation if
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Since flow changes direction after every half period 7/w, there is no separation in every half

period if
A 0.35
—<— =01
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This is of course very crude. Experimentally Keulegan and Carpenter have estiblished
that separation occurs in waves if A/a exceeds 1. The ratio A/a is now known as the
Keulegan and Carpenter number.
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Figure 3.9.3: Definition of coordinates for a circular cylinder.



