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3.9 Oscillatory Boundary Layers

3.9.1 Stokes problem

Near the solid bottom under a wave there is a boundary layer. Let the outside flow have the
tangential velocity u = RU (x)e~**. Consider the ratio

Ully, VUy O(UO)

Uy wlL

If
1> 2 U
wlL wl?

then, to a high degree of acuracy in §%/L?, we have, in physical variables:
Uy +vy, =0 (3.9.1)

u + (uuy + vuy) = Uy + UU, + vuy, (3.9.2)

Keep in mind that the quadratic terms are one order in U,/wL smaller than the linear terms.
Let us introduce, artifically for the sake of keeping track of the small terms the ordering

parameter

. o

- wl

and insert it in front of the nonlinear terms so that (3.9.2) becomes

<1

€

w + e(uuy +vuy) = Uy + eUU, + vuy, (3.9.3)

Let us apply the perturbation method by assuming an approximate solution in the form of

a series,
u = uy + euy + O(e?), (3.9.4)

Substituting (3.9.4) into the boundary layer equations and separate terms of different
orders, we get perturbation equations of different orders: O(€)? and O(e), etc. After this
mission is accopmplished, the order parameter will be discarded.



From the leading order O(U,/wL)°,
8u1 oUu 82'&1
subject to the boundary conditions that
uy — Ulx,t) Yy — 00 (3.9.6)

and
u =0 y=0 (3.9.7)
From here on we only consider simple harmonic time dependence, i.e., the tangential
inviscid velocity at the outer edge of the boundary layer is

U, t) =R (U(x)e ).

Let ' '
up = RN [ﬁl (z,y)e ™" + L{e*m} (3.9.8)
then 2%
— il — iwity = —iwl + v
dy?
Therefore,
d2ﬂ1 1w “
Gp =0 (3.9.9)
i — 0, Yy — 00 (3.9.10)
U = —U(x), y = (3.9.11)
The solution (due to Stokes) is
Uy = —U(x)exp [—(1 — 1)y wa} (3.9.12)

or,

up =N {Z/{(x) {1 — exp (—(1 - Z)y\/gﬂ ei“’t} (3.9.13)

The sign of v/—i is chosen so that (3.9.10) is satisfied. The boundary layer thickness is

2v
=] — .9.14
) - (3.9.14)

To complete the leading order solution we calculate the transverse velocity component
vy in the boundary layer. By continuity:

yaul o tdZ,{ Y o
- et 4 — iwt 1 — (1-i)y/o 91
vy N dy = ie o /0 [ e } dy (3.9.15)
L dU 0 .
_—iwt Y _ —(—-d)y/é
™ {y 14 L }}

which is valid in y < O(d) only. Thus if the inviscid outer flow has tangential variation
% # 0, then there is transverse flow v; in the boundary layer.



3.9.2 Induced Streaming

The second-order perturbation equation is :

Quy Oy 00 0w O
ot o2 Oz Yor T oy

3£ 0 (ulul) 0 (Uﬂ)l)
U('?:I: [ or + dy

Since U, u; and v; are simple harmonic in time, the solution for us must have zeroth and
second harmonics. Focussing on the zeroth harmonic by taking the average over a period

821_02 oUu (3’2111%1 8u1v1
0y? ox ox dy

On the right-hand-side the last two terms wiuy, u;v; are wave-induced Reynolds stresses. In

particular pujuy is the rate of transporting x-momentum in the z-directionm, and puyvy is
the rate of transporting x-momentum in y-direction.

Alternatively:
82ﬂ2 10— 10— 8U1
= U2 - 22— —=
g oy? 20x 207 1" oy
Let

a=(1-1)/4 (3.9.16)
Since

v = z'e_i“’tl au

i (ay -1+ e_ay>

o ol (x)e” e

Exercise: Show that if

then the time average of their product is

ab = ;%(AB*) - ;%(A*B).

(3.9.17)
Using this formula it can be shown that

B ou; 1 du o*
v oy 2

—— = —Re U*%Ee_a*y (ay -1+ e_ay)l



Thus
0*u LdjU? .
i = =gt [ (- (1)
+R6U*§Zopke_“*y (ay —1+4e ay)

oo Yy
= —y [ GUW)dy + /0 y'G(y")dy"

Y

One more integration gives

—wiy = Re Fudu
dx
1 A T | N =2
where FF' = ——(1—3i)e T——e T——(1+d)e ™
2 2 4
1 N (i), O :
+§(1—|—1)ne "—i—z(l—z)

Note that as y — o0, just outside the boundary layer,

_ 3 AU
Uy = —@Re l(l —)U T ] (3.9.18)
By Taylor expansion we can show that for n < 1,
_ (1+4)n, dU*
~ = 9.1
Uy ~ Re l " 21/{ I (3.9.19)

Example : Surface gravity waves
On the free surface of water of contant depth h, let the vertical displacement be

¢=R[A (" + Re7h) e ] (3.9.20)

where R denotes the reflection coefficient. The frequency w frequency and and the wavenum-
ber k are related by

w? = gk tanh kh (3.9.21)

The corresponding velocity potential is

igA cosh k(z + h)
w cosh kh

=R l— (e + Re ™) e—iwtl (3.9.22)



The inviscid horizontal velocty just above the bed boundary layer is

9 gkA ke poike) ot
— P _ - g ikr ikx iw
ox (2, =1, 1) w cosh k;héR {(e he ) ‘ }

We can then identify

gkA ikx —ikx
= — - R
w cosh kh (e ‘ )
For purely progressive waves, R = 0
gkA
Z/{ — IRT
w cosh kh*

hence
diU* _ ik gkA

de ! w cosh kh
The induced streaming velocity is,

_ 3 gkA \’
= 2 =
tiz(00) 4w (wcoshkh)

at the upper edge of the boundary layer, and

2
~ 1 gkA
~ —k| ——— 1.
ti2(n) 2w <wcosh/<:h>’ <

—ikx

near the bottom of the boundary layer. The velocity profile is monotonic in height.

For purely standing waves R = 1, we have

gkA .
=—" 9 k
u wcosh kh tSULE
and du kA
) g
- Q2
dz ka cosh kh cos ki
Hence 9
du* gkA .
U i <wcosh k;h) 2k sin 2kx

It follows that
3 gkA

2
_ _ 3 (_gkA 09
iz(00) 4w (wcoshkh) sin 2k

and

n gkA 2
U ~ —k| —— in 2k 1.
(1) 2w (w cosh kh) Sk, )<

(3.9.23)

(3.9.24)
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(3.9.26)
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(3.9.29)

(3.9.30)
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Thus near the bottom of the boundary layer, the streaming velocty converges toward points
beneath the amplitude minima. Near the top, the opposite is true. See Figure (3.9.2).
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Figure 3.2 Schematic variation of mass transport velocity beneath a standing wave.




3.9.3 Physics of the Induced Streaming

Take progressive water waves as an example: We have outside the boundary layer,
Uso = U, cos(wt — k) (3.9.34)
and inside the boundary layer,
u="U, {cos(wt — kx) — e Y/ cos(wt — kx — y/6)} (3.9.35)
where the velocity amplitude U, is related to the surface amplitude A by

U gkA  Aw
" wcoshkh  sinhkh

(3.9.36)

Let us find the induced transverse velocity v

ou

Fr U, sin(wt — kx) — Upye ¥/° sin(wt — kx — y/0)
T

¥ Oy 1 1
Voo = —/ E dy = —y U, sin(wt — kx) — §Uok5 cos(wt — kx) + §Uok:5 sin(wt — k)
0 x

Now 1
UooUog = —ZU3k5 <0

where the sin(wt—kx) terms in vy, are out of phase with u., by /2, hence does not contribute
to the mean.

Now consider a slice of boundary layer one wavelength long. Because of periodicity, there
is no net transfer of momentum or forces at two ends xy and x¢+ 27 /k. But the momentum

transfer downwards is %gké , causing a positive shear stress. To balance it there must be a
Nnon-zero /”L%Z at all levels y below the top. Hence, the induced streaming velocity is created
and @ # 0.

The induced streaming in a wave boundary layer is a mechanism for the generation of

sand bars, as shown in the following phtographs.
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Figure 3.9.1: Reynolds stress and Induced streaming in Stokes layer
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Figure 3.9.2: Accumulation of heavy sand on the metalic bottom of a wave tank. Refection

coefficients vary from low to high. Note that for high reflection, heavy sand pile up beneath
the wave nodes.



