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3.9 Oscillatory Boundary Layers

3.9.1 Stokes problem

Near the solid bottom under a wave there is a boundary layer. Let the outside flow have the
tangential velocity u = ℜU(x)e−iωt. Consider the ratio

uux, vuy

ut

= O
(

Uo

ωL

)

If

1 ≫ Uo

ωL
≫ ν

ωL2

then, to a high degree of acuracy in δ2/L2, we have, in physical variables:

ux + vy = 0 (3.9.1)

ut + (uux + vuy) = Ut + UUx + νuyy (3.9.2)

Keep in mind that the quadratic terms are one order in Uo/ωL smaller than the linear terms.
Let us introduce, artifically for the sake of keeping track of the small terms the ordering

parameter

ǫ =
Uo

ωL
≪ 1

and insert it in front of the nonlinear terms so that (3.9.2) becomes

ut + ǫ(uux + vuy) = Ut + ǫUUx + νuyy (3.9.3)

Let us apply the perturbation method by assuming an approximate solution in the form of
a series,

u = u1 + ǫu2 + O(ǫ2), (3.9.4)

Substituting (3.9.4) into the boundary layer equations and separate terms of different
orders, we get perturbation equations of different orders: O(ǫ)0 and O(ǫ), etc. After this
mission is accopmplished, the order parameter will be discarded.
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From the leading order O(Uo/ωL)0,

∂u1

∂t
=

∂U

∂t
+ ν

∂2u1

∂y2
y > 0 (3.9.5)

subject to the boundary conditions that

u1 → U(x, t) y → ∞ (3.9.6)

and
u1 = 0 y = 0 (3.9.7)

From here on we only consider simple harmonic time dependence, i.e., the tangential
inviscid velocity at the outer edge of the boundary layer is

U(x, t) = ℜ
(

U(x)e−ωt
)

.

Let
u1 = ℜ

[

û1(x, y)e−iωt + Ue−iωt
]

(3.9.8)

then

−iωU − iωû1 = −iωU + ν
d2û1

dy2

Therefore,
d2û1

dy2
+

iω

ν
û1 = 0 (3.9.9)

û1 → 0, y → ∞ (3.9.10)

û1 = −U(x), y = 0 (3.9.11)

The solution (due to Stokes) is

û1 = −U(x) exp
[

−(1 − i)y

√

ω

2ν

]

(3.9.12)

or,

u1 = ℜ
{

U(x)
[

1 − exp
(

−(1 − i)y

√

ω

2ν

)]

e−iωt
}

(3.9.13)

The sign of
√
−i is chosen so that (3.9.10) is satisfied. The boundary layer thickness is

δ =

√

2ν

ω
(3.9.14)

To complete the leading order solution we calculate the transverse velocity component
v1 in the boundary layer. By continuity:

v1 = −
∫ y

0

∂u1

∂x
dy = ie−iωt dU

dx

∫ y

0

[

1 − e−(1−i)y/δ
]

dy (3.9.15)

= −e−iωt dU
dx

{

y − δ

1 − i

[

1 − e−(1−i)y/δ
]

}

which is valid in y ≤ O(δ) only. Thus if the inviscid outer flow has tangential variation
dU
dx

6= 0, then there is transverse flow v1 in the boundary layer.
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3.9.2 Induced Streaming

The second-order perturbation equation is :

∂u2

∂t
− ν

∂2u2

∂y2
= U

∂U

∂x
−
(

u1
∂u1

∂x
+ v1

∂u1

∂y

)

= U
∂U

∂x
−
[

∂ (u1u1)

∂x
+

∂ (u1v1)

∂y

]

Since U, u1 and v1 are simple harmonic in time, the solution for u2 must have zeroth and
second harmonics. Focussing on the zeroth harmonic by taking the average over a period

−ν
∂2ū2

∂y2
= U

∂U

∂x
−
(

∂u1u1

∂x
+

∂u1v1

∂y

)

On the right-hand-side the last two terms u1u1, u1v1 are wave-induced Reynolds stresses. In
particular ρu1u1 is the rate of transporting x-momentum in the x-directionm, and ρu1v1 is
the rate of transporting x-momentum in y-direction.

Alternatively:

−ν
∂2ū2

∂y2
=

1

2

∂

∂x
U2 − 1

2

∂

∂x
u2

1 − v1
∂u1

∂y

Let

α = (1 − i)/δ (3.9.16)

Since

v1 = ie−iωt 1

α

dU
dx

(

αy − 1 + e−αy
)

∂u1

∂y
= αU(x)e−iωte−αy

Exercise: Show that if

a(t) = ℜ(Ae−iωt), and b(t) = ℜ(Be−iωt)

then the time average of their product is

ab =
1

2
ℜ(AB∗) =

1

2
ℜ(A∗B). (3.9.17)

Using this formula it can be shown that

−v1
∂u1

∂y
=

1

2
Re

[

U∗
dU
dx

α∗

α
e−α∗y

(

αy − 1 + e−αy
)

]
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Thus

−ν
∂2ū2

∂y2
= G(y) ≡ 1

2

d|U|2
dx

[

1 −
(

1 − e−αy
) (

1 − e−α∗y
)]

+ReU∗
dU
dx

α∗
α

e−α∗y
(

αy − 1 + e−αy
)

ν
∂ū2

∂y
=

∫

∞

y
G(y′)dy′

ν ū2 =
∫ y

0
dy′′

∫

∞

y′′

G(y′)dy′

= −y
∫

∞

y
G(y′)dy′ +

∫ y

0
y′′G(y′′)dy′′

One more integration gives

−ωū2 = Re FU dU∗

dx

where F = −1

2
(1 − 3i)e−(1−i)η − i

2
e−(1+i)η − 1

4
(1 + i)e−2η

+
1

2
(1 + i)ηe−(1−i)η +

3

4
(1 − i)

Note that as y → ∞, just outside the boundary layer,

ū2 = − 3

4ω
Re

[

(1 − i)U dU∗

dx

]

(3.9.18)

By Taylor expansion we can show that for η ≪ 1,

ū2 ≈ Re

[

(1 + i)

ω

η

2
U dU∗

dx

]

(3.9.19)

Example : Surface gravity waves
On the free surface of water of contant depth h, let the vertical displacement be

ζ = ℜ
[

A
(

eikx + Re−ikx
)

e−iωt
]

(3.9.20)

where R denotes the reflection coefficient. The frequency ω frequency and and the wavenum-
ber k are related by

ω2 = gk tanh kh (3.9.21)

The corresponding velocity potential is

Φ = ℜ
[

−igA

ω

cosh k(z + h)

cosh kh

(

eikx + Re−ikx
)

e−iωt

]

(3.9.22)
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The inviscid horizontal velocty just above the bed boundary layer is

∂

∂x
Φ(x,−h, t) =

gkA

ω cosh kh
ℜ
[(

eikx − Re−ikx
)

e−iωt
]

(3.9.23)

We can then identify

U =
gkA

ω cosh kh

(

eikx − Re−ikx
)

(3.9.24)

For purely progressive waves, R = 0

U =
gkA

ω cosh kh
eikx (3.9.25)

hence
dU∗

dx
= −ik

gkA

ω cosh kh
e−ikx (3.9.26)

The induced streaming velocity is,

ū2(∞) =
3

4ω
k

(

gkA

ω cosh kh

)2

(3.9.27)

at the upper edge of the boundary layer, and

ū2(η) ≈ η

2ω
k

(

gkA

ω cosh kh

)2

, η ≪ 1. (3.9.28)

near the bottom of the boundary layer. The velocity profile is monotonic in height.
For purely standing waves R = 1, we have

U =
gkA

ω cosh kh
2i sin kx (3.9.29)

and
dU∗

dx
= −2ik

gkA

ω cosh kh
cos kx (3.9.30)

Hence

U dU∗

dx
=

(

gkA

ω cosh kh

)2

2k sin 2kx (3.9.31)

It follows that

ū2(∞) = − 3

4ω
k

(

gkA

ω cosh kh

)2

sin 2kx (3.9.32)

and

ū2(η) ≈ η

2ω
k

(

gkA

ω cosh kh

)2

sin 2kx, η ≪ 1. (3.9.33)

Thus near the bottom of the boundary layer, the streaming velocty converges toward points
beneath the amplitude minima. Near the top, the opposite is true. See Figure (3.9.2).
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3.9.3 Physics of the Induced Streaming

Take progressive water waves as an example: We have outside the boundary layer,

u∞ = Uo cos(ωt − kx) (3.9.34)

and inside the boundary layer,

u = Uo

[

cos(ωt − kx) − e−y/δ cos(ωt − kx − y/δ)
]

(3.9.35)

where the velocity amplitude Uo is related to the surface amplitude A by

Uo =
gkA

ω cosh kh
=

Aω

sinh kh
(3.9.36)

Let us find the induced transverse velocity v

∂u

∂x
= Uo sin(ωt − kx) − Uoe

−y/δ sin(ωt − kx − y/δ)

v∞ = −
∫ y≫δ

0

∂u

∂x
dy = −y Uo sin(ωt − kx) − 1

2
Uokδ cos(ωt − kx) +

1

2
Uokδ sin(ωt − kx)

Now

u∞v∞ = −1

4
U2

o kδ < 0

where the sin(ωt−kx) terms in v∞ are out of phase with u∞ by π/2, hence does not contribute
to the mean.

Now consider a slice of boundary layer one wavelength long. Because of periodicity, there
is no net transfer of momentum or forces at two ends x0 and x0 +2π/k. But the momentum

transfer downwards is U2
o

4
kδ, causing a positive shear stress. To balance it there must be a

non-zero µ∂ū
∂y

at all levels y below the top. Hence, the induced streaming velocity is created
and ū 6= 0.

The induced streaming in a wave boundary layer is a mechanism for the generation of
sand bars, as shown in the following phtographs.



8

Figure 3.9.1: Reynolds stress and Induced streaming in Stokes layer
.

Figure 3.9.2: Accumulation of heavy sand on the metalic bottom of a wave tank. Refection
coefficients vary from low to high. Note that for high reflection, heavy sand pile up beneath
the wave nodes.


