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3.8 Gust, or impulsive flow past a blunt body

Ref: H. Schlichting, Boundary layer theory, p 400 ff.

As an example of unsteady boundary layer, let us consider the initial stage (U,T'/L < 1)
of a boundary layer due to the impulsive start of flow near a blunt body, see the sketch in
Figure 3.8.1.
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Figure 3.8.1: Boundary layer around a blunt body

Let us start with the boundary layer approximation and introduce a perturbation expan-
sion in powers of the small ratio U,T/L,
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We then get
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Equating the coefficients of (%) we get the first (leading) order perturbation equations
in normalized coordinates,

ul) + ot =0, (3.8.6)
u) = u?(j} (3.8.7)
subject to the initial conditions:
u =M =0. t=0, Wy, (3.8.8)
and the boundary condtions
ut =M =0. y=0, Vt (3.8.9)
u =U, y— oo (3.8.10)

Equating the coefficient of (UET

), we get the second order perturbation equations in
normalized coordinates,

W 1@ =0, (3.8.11)
U,T\?
0 + (@Ou® + v Ou®) = U, + u® + 0 (L) (3.8.12)

subject to the same initial and boundary conditions on the wall as the first order problem,
except that
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u? =0, y— o0 (3.8.13)

To return to physical variables, we need only add the coeficient v in front of the viscous
stress term wuy, in (3.8.7), and (3.8.12). The first order problem for the tangential velocity
is precisely the Rayleigh problem

uf = ufl) (3.8.14)

subject to the initial conditions:
u =0, t=0, Yy (3.8.15)

and the boundary condtions
V=0 y=0, WVt (3.8.16)



u = U, y — oo

The solution is -
uO(a,y,t) = Ulw)eri(n) = U(x) = [ e dy
V7 Jo

where
n= Y
V2t
Integrating the continuity equation (3.8.6) we get
v 0 au U
v = — ﬂdy = ——2\/%/ erf(n) dn
0o Oz dz 0

To simply the notation we introduce

ert() = Gn). [ eritn) dn = Go)

so that QU
) = U2)G(m), oW = ———2Vwto(n)

The second-order approximation is
u,@ — Vué? =UU, —uWMull) — U(l)ug)
subject to the initial and boundary conditions that
u?(y,0) =0, uP(y,t)=0 fory=0,00

The right hand side of (3.8.23) can be worked out so that

uf? = vu®) = UU, [L = (ertn))? + 7 [ ext(y) dn)

= UU, [1 = ()? + hh"| = UU,F ()

A similarity solution is possible. Let us seek a one-parameter transformation,

u® = 2@ =\ = Ay
From (3.8.23) we get
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Note that z is just a parameter. Clearly a = b = 2¢ so that we can take
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Substituting (3.8.26) into (3.8.25), we get a linear ordinary differential equation

Fr+omf = Af =4[ = G — 1] (3.8.27)
subject to the boundary conditions that
f=0, n=0,00 (3.8.28)

The solution is not difficult (see Schlichting, eq. 15.43, p. 400).
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The solution is plotted in Figure 3.8.2.
The total solution is
u = Uerf(n) +tUU, f(n) (3.8.30)

Figure 3.8.2: Solution to the problem of impulsive start.

Separation
For a given U(z) when and where will separation first occur? Namely, when is
ou
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Let us use (3.8.30) for a crude estimate. Since

du
dy
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It can be show n that at n =0,

ety = = ) == (1+5)

It follows that 4
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Note that t; > 0 only for U, < 0, i.e., a decelerated flow. This is a very crude and mathe-
matically illigitimate estimate since we are equating two terms of different order.

Neveltherless let us apply this result to the impulsive flow passing a circular cylinder
from the left. Let U, be the constant velocity at infinity and the polar angle # be measured
from the upstream stagnation point, then z = af where a is the radius, see Figure 3.8.3. It
is well known in the potential theory that the potential is

t, =

(3.8.31)
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The tangential velocity along the cylinder » = a is
10 U, 2
7"8?:7“ <T+i>sin(ﬁ—9), r=a
or
U =2U,sin(m — 6) = 2U,sin(f) = 2U, sinz/a
The minimum ¢4 occurs at the riear stagnation point, x = wa at which

. _ 035 U,

S UO 9 or - 035

Note that the last condition indicates the illigitimacy of this estimate. Nevertheless we use
it here as an order-of-magnitude guide which may be improved by working out higher order
terms.

In offshore stuctures, wave induced oscillatory flows acound a pile can be separated and
hence affect the drag force on the pile. As an order estimate we take U, = wA where
w =frequency and A =wave amplitude. Hence there is no separation if
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Since flow changes direction after every half period 7/w, there is no separation in every half

period if
A 035
—<—=0.1
a T
This is of course very crude. Experimentally Keulegan and Carpenter have estiblished
that separation occurs in waves if A/a exceeds 1. The ratio A/a is now known as the

Keulegan and Carpenter number.
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Figure 3.8.3: Definition of coordinates for a circular cylinder.

Appendix: Details of perturbation analysis

Consider
> v S u,r U,
w27 T L T wL
Dimensionless equations
Uy + vy = 0, (3.8.1)
up + €(uuy + vuy) = Up + eUU, + uy, (3.8.2)
Introduce
U=1u + €Uy + us + -+, V=114 €U+ €vg3+---, (3.8.3)
Plugging into (3.8.1),

8835(ul+euQ+e2U3+---,)+§y(v1+ev2+62v3+---,)=O

Plugging into (3.8.2)

aat(ul—l—eug—l—e?ug—l—“',)
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Order O(e°):
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8u1 o 8U 82U1
5 o + B (3.8.5)
Order O(e):
aUQ 01)2 .
B + o 0 (3.8.6)
6uz 8u1 (9u1 . oUu 82U2
Boundary conditions: O(€):
uy=v1 =0, y= 3.8.8
uw — U, y— o0 (3.8.9)
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