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3.8 Gust, or impulsive flow past a blunt body

Ref: H. Schlichting, Boundary layer theory, p 400 ff.

As an example of unsteady boundary layer, let us consider the initial stage (UoT/L ≪ 1)
of a boundary layer due to the impulsive start of flow near a blunt body, see the sketch in
Figure 3.8.1.

Figure 3.8.1: Boundary layer around a blunt body
.

Let us start with the boundary layer approximation and introduce a perturbation expan-
sion in powers of the small ratio UoT/L,

u = u(1) +
(

UoT

L

)

u(2) +
(

UoT

L

)2

u(3) · · · , (3.8.1)

p = p(1) +
(

UoT

L
)p(2) + (

UoT

L

)2

p(3) + · · · (3.8.2)

We then get

u(1)
x + v(1)

y +
(

UoT

L

)

(

u(2)
x + v(2)

y

)

+ · · · = 0, (3.8.3)
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and

u
(1)
t +

UoT

L
u

(2)
t +

UoT

L
(u(1)u(1)

x + v(1)u(1)
y ) + O

(

UoT

L

)2

=
UoT

L
UUx + u(1)

yy +
UoT

L
u(2)

yy + O
(

UoT

L

)2

(3.8.4)

(3.8.5)

Equating the coefficients of
(

UoT
L

)0
we get the first (leading) order perturbation equations

in normalized coordinates,
u(1)

x + v(1)
y = 0, (3.8.6)

u
(1)
t = u(1)

yy (3.8.7)

subject to the initial conditions:

u(1) = v(1) = 0. t = 0, ∀y; (3.8.8)

and the boundary condtions

u(1) = v(1) = 0. y = 0, ∀t; (3.8.9)

u(1) = U, y → ∞ (3.8.10)

Equating the coefficient of
(

UoT
L

)

, we get the second order perturbation equations in
normalized coordinates,

u(2)
x + v(2)

y = 0, (3.8.11)

u
(2)
t + (u(1)u(1)

x + v(1)u(1)
y ) = UUx + u(2)

yy + O
(

UoT

L

)2

(3.8.12)

subject to the same initial and boundary conditions on the wall as the first order problem,
except that

u(2) → 0, y → ∞ (3.8.13)

.
To return to physical variables, we need only add the coeficient ν in front of the viscous

stress term uyy in (3.8.7), and (3.8.12). The first order problem for the tangential velocity
is precisely the Rayleigh problem

u
(1)
t = u(1)

yy (3.8.14)

subject to the initial conditions:

u(1) = 0. t = 0, ∀y; (3.8.15)

and the boundary condtions
u(1) = 0. y = 0, ∀t; (3.8.16)
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u(1) = U, y → ∞ (3.8.17)

The solution is

u(1)(x, y, t) = U(x)erf(η) = U(x)
2√
π

∫ η

0
e−η2

dη (3.8.18)

where
η =

y√
2νt

(3.8.19)

Integrating the continuity equation (3.8.6) we get

v(1) = −
∫ y

0

∂u1

∂x
dy = −dU

dx
2
√

νt
∫ η

0
erf(η) dη (3.8.20)

To simply the notation we introduce

erf(η) = ζ ′

0(η),
∫ η

0
erf(η) dη = ζ0(η) (3.8.21)

so that

u(1) = U(x)ζ ′

0(η), v(1) = −dU

dx
2
√

νtζ0(η) (3.8.22)

The second-order approximation is

u
(2)
t − νu(2)

yy = UUx − u(1)u(1)
x − v(1)u(1)

y (3.8.23)

subject to the initial and boundary conditions that

u(2)(y, 0) = 0, u(2)(y, t) = 0 fory = 0,∞ (3.8.24)

The right hand side of (3.8.23) can be worked out so that

u
(2)
t − νu(2)

yy = UUx

[

1 − (erf(η))2 + e−η2

∫ η

0
erf(η) dη

]

= UUx

[

1 − (h′)2 + hh′′

]

= UUxF (η) (3.8.25)

A similarity solution is possible. Let us seek a one-parameter transformation,

u(2) = λau(2)′, t = λbt′, y = λcy′

From (3.8.23) we get

λa−b ∂u(2)′

∂t′
− νλa−2c ∂

2u(2)′

∂y′2
= UUxF (λc−b/2η′)

Note that x is just a parameter. Clearly a = b = 2c so that we can take

u(2)

t
= f(η)UUx (3.8.26)
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Substituting (3.8.26) into (3.8.25), we get a linear ordinary differential equation

f ′′ + 2ηf ′ − 4f = 4
[

(ζ ′

0)
2 − ζ0ζ

′′

0 − 1
]

(3.8.27)

subject to the boundary conditions that

f = 0, η = 0,∞ (3.8.28)

The solution is not difficult (see Schlichting, eq. 15.43, p. 400).

f = erfc(η)

[

− 3√
π

e−η2

+ 2 −
(

3√
π

+
4

3π
√

π

)

+

√
π

2
(2η2 + 1)

]

+
1

2
(2η2 − 1)erfc2(η) +

2

3
e−2η2

(3.8.29)

+ e−η2

[

η√
π
− 4

3π
+ η

(

3√
π

+
4

3π
√

π

)]

The solution is plotted in Figure 3.8.2.
The total solution is

u = Uerf(η) + tUUxf(η) (3.8.30)

Figure 3.8.2: Solution to the problem of impulsive start.
.

Separation
For a given U(x) when and where will separation first occur? Namely, when is

∂u

∂y
= 0aty = 0
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Let us use (3.8.30) for a crude estimate. Since

∂u

∂y
= [U(erfη)′ + UUx t f ′(η)]

∂η

∂y

It can be show n that at η = 0,

(erfη)′ =
2√
π

, f ′(η) =
2√
π

(

1 +
4

3π

)

It follows that

U + ts

(

1 +
4

3π

)

UUx = 0

or

ts = − 0.7

UUx

(3.8.31)

Note that ts > 0 only for Ux < 0, i.e., a decelerated flow. This is a very crude and mathe-
matically illigitimate estimate since we are equating two terms of different order.

Neveltherless let us apply this result to the impulsive flow passing a circular cylinder
from the left. Let Uo be the constant velocity at infinity and the polar angle θ be measured
from the upstream stagnation point, then x = aθ where a is the radius, see Figure 3.8.3. It
is well known in the potential theory that the potential is

φ = Uo

(

r +
a2

r

)

cos(π − θ)

The tangential velocity along the cylinder r = a is

1

r

∂φ

∂θ
=

Uo

r

(

r +
a2

r

)

sin(π − θ), r = a

or
U = 2Uo sin(π − θ) = 2Uo sin(θ) = 2Uo sin x/a

The minimum ts occurs at the riear stagnation point, x = πa at which

ts =
0.35a

Uo

, or
Uots
a

= 0.35

Note that the last condition indicates the illigitimacy of this estimate. Nevertheless we use
it here as an order-of-magnitude guide which may be improved by working out higher order
terms.

In offshore stuctures, wave induced oscillatory flows acound a pile can be separated and
hence affect the drag force on the pile. As an order estimate we take Uo = ωA where
ω =frequency and A =wave amplitude. Hence there is no separation if

ωAts
a

< 0.35, or
A

a
<

0.35

ωts
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Since flow changes direction after every half period π/ω, there is no separation in every half
period if

A

a
<

0.35

π
= 0.1

This is of course very crude. Experimentally Keulegan and Carpenter have estiblished
that separation occurs in waves if A/a exceeds 1. The ratio A/a is now known as the
Keulegan and Carpenter number.

Figure 3.8.3: Definition of coordinates for a circular cylinder.
.

Appendix: Details of perturbation analysis

Consider

1 ≫ ν

ωL2
≫ ǫ =

UoT

L
∼ Uo

ωL
Dimensionless equations

ux + vy = 0, (3.8.1)

ut + ǫ(uux + vuy) = Ut + ǫUUx + uyy (3.8.2)

Introduce
u = u1 + ǫu2 + ǫ2u3 + · · · , v = v1 + ǫv2 + ǫ2v3 + · · · , (3.8.3)

Plugging into (3.8.1),

∂

∂x

(

u1 + ǫu2 + ǫ2u3 + · · · ,
)

+
∂

∂y

(

v1 + ǫv2 + ǫ2v3 + · · · ,
)

= 0

Plugging into (3.8.2)
∂

∂t

(

u1 + ǫu2 + ǫ2u3 + · · · ,
)

+ǫ(u1 + ǫu2 + ǫ2u3 + · · ·) ∂

∂x
(u1 + ǫu2 + ǫ2u3 + · · ·)
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+ǫ(v1 + ǫv2 + ǫ2v3 + · · ·) ∂

∂y
(u1 + ǫu2 + ǫ2u3 + · · ·)

=
∂U

∂t
+ ǫU

∂U

∂x
+

∂2

∂y2
(u1 + ǫu2 + ǫ2u3 + · · ·)

Order O(ǫ0):
∂u1

∂x
+

∂v1

∂y
= 0 (3.8.4)

∂u1

∂t
=

∂U

∂t
+

∂2u1

∂y2
(3.8.5)

Order O(ǫ):
∂u2

∂x
+

∂v2

∂y
= 0 (3.8.6)

∂u2

∂t
+

(

u1
∂u1

∂x
+ v1

∂u1

∂y

)

= U
∂U

∂x
+

∂2u2

∂y2
(3.8.7)

Boundary conditions: O(ǫ0):
u1 = v1 = 0, y = 0 (3.8.8)

u1 → U, y → ∞ (3.8.9)

O(ǫ):
u2 = v2 = 0, y = 0 (3.8.10)


