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3.8 Oscillatory Boundary Layers

3.8.1 Stokes problem

Near the solid bottom under a wave there is a boundary layer. Let the outside flow have the

tangential velocity u = RU (x)e~**. Consider the ratio
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Uy wlL
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wlL wl?
we let

U=1U + U+ ...

and get from the Navier-Stokes equations the leading order approximation

8u1 0 iwt 82u1
E:a}%e(Ue )+yay2 y>0
subject to the boundary conditions that
uy — ReUe ™'y — o0
and
u; =0 Yy = 0
Let ‘ A
u; = Re {ﬁl(a:, y)e ™+ Ue_m}
then a2
—wU —iwi; = —iwlU + v U
dy?
Therefore,

dszl i w N 0
— U =
dy? v

(3.8.1)

(3.8.2)

(3.8.3)

(3.8.4)

(3.8.5)

(3.8.6)



u; — 0, Yy — 00 3.8.7
= —Ui(z), y=0 (3.8.8)
The solution is
iy = —U() exp [—(1 _ i)y 2&] (3.8.9)
v

or,

up =N {U(x) [1 — exp <—(1 — 1)y ;—V)] e_m} (3.8.10)

The sign of v/—i is chosen so that (3.8.7) is satisfied. The boundary layer thickness is

2v
3.8.2 Induced Streaming

If the inviscid outer flow has tangential variation % # 0, then there is transverse flow v; in
the boundary layer. By continuity:
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which is valid in y < O(d) only.
Let us examine the second order:
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Since U,u; and v, are simple harmonic in time, the solution for us must have zeroth and
second harmonics. Focussing on the zeroth harmonic by taking the average over a period
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On the right-hand-side the last two terms wyuy, U307 are wave-induced Reynolds stresses. In
particular puiu; is the rate of transporting x-momentum in the z-directionm, and puyvy is
the rate of transporting x-momentum in y-direction.
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Let
a=(1-14)/ (3.8.13)
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One more integration gives
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Note that as y — o0, just outside the boundary layer,
3 au*
g =——Re |[(1—0)U 3.8.14
v == pe (1= ) U] (3814
By Taylor expansion we can show that for n < 1,
au*
iy ~ Re [(1 + i)gU e ] (3.8.15)

Example : Surface gravity waves



On the free surface of water of contant depth h, let the vertical displacement be
¢ = Re {A (e““ + Re_““) e_i“’t} (3.8.16)

where R denotes the reflection coefficient. The frequency w frequency and and the wavenum-
ber k are related by

w? = gktanh kh (3.8.17)
The corresponding velocity potential is
igAcoshk(z+h) / ke it
® = Re |— 4+ Rem"™ ) e 3.8.18
¢ [ w cosh kh (e e ) c ( )

The inviscid horizontal velocty just above the bed boundary layer is
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We can then identify
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— - R 3.8.20
w cosh kh (6 ‘ ) ( )
For purely progressive waves, R = 0
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The induced streaming velocity is,
fa(00) = -y —9kA 2 (3.8.23)
Ug(o0) = —k | ———— 8.
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at the upper edge of the boundary layer, and

kA
_ ~"k( g

2
~ — S 1. 3.8.24
(1) 2w \ wcosh kh) A ( )

near the bottom of the boundary layer. The velocity profile is monotonic in height.
For purely standing waves R = 1, we have
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and
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Figure 3.2 Schematic variation of mass transport velocity beneath a standing wave.

Hence
UdU* B gkA
dr  \wcoshkh

2
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It follows that
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Thus near the bottom of the boundary layer, the streaming velocty converges toward points
beneath the amplitude minima. Near the top, the opposite is true. See Figure (3.8.2).

3.8.3 Physics of the Induced Streaming

Take progressive water waves as an example: We have outside the boundary layer,

Uso = U, cos(wt — k) (3.8.30)



and inside the boundary layer,
u="U, {cos(wt — kx) — e Y% cos(wt — kx — y/é)} (3.8.31)
where the velocity amplitude U, is related to the surface amplitude A by

gkA Aw

Uo = wcosh kh _ sinh kh (3.8.32)

Let us find the induced transverse velocity v

% = U, sin(wt — kz) — U,e¥/° sin(wt — kx — y/9)
x
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Now

1
TogUog = —ZUfk(S <0

where the sin(wt—kz) terms in v, are out of phase with u., by 7/2, hence does not contribute
to the mean.

Now consider a slice of boundary layer one wavelength long. Because of periodicity, there
is no net transfer of momentum or forces at two ends xy and z¢ + 27 /k. But the momentum
transfer downwards is Ufgk& causing a positive shear stress. To balance it there must be a

NoN-zero ug—‘; at all levels y below the top. Hence, the induced streaming velocity is created
and u # 0.
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Figure 3.8.1: Reynolds stress and Induced streaming in Stokes layer



