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3.2 Viscous Flow at High Reynolds Numbers

Let us first give a heuristic estimates of boundary layer in steady flows.
Consider a particle near the wall to be influenced by viscosity. After traveling a distance
x from the edge, it has been under viscous influence for a time of t = 2/U. Let U be large.
For finite z, ¢ is small so that vorticity is spread sideways to the width (1) ~ (va/U)"*.
Let us define this width to be the boundary layer, which has thickness § = O (va/U)"?.
Alternatively we start from Navier-Stokes equations :
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When viscosity is important y = O(9),x = O(L), convective inertia is comparable to viscous
stresses.
From continuity

From z—momentum
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Shear stress on the awall :
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Hence the drag coefficient is,
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For water v = 107°ft*/sec. Let U =1 ft/sec L = 1 ft, then Re = 10°. Hence,
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and

Cp ~ 0.003.

Experiments for flat plates (Schlichting, p. 133) show that: C'p ~ 0.002, but experiments
for a circular cylinder show that Cp & 0(1) because flow is separated for most Re .

3.2.1 Systematic Boundary-layer Approximation

Let u = O(U), x = O(L), y = 0(9). From continuity, v = O(UJ/L). Let u — Uu, v —
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From Eqn. (3.2.6)
Uy + vy, = 0. (3.2.9)
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To keep the dominant viscous stress term in Eqn. (3.2.10), we must have
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and from Eqn. (3.2.10)

Uy + vu, = 2 Pe + Uy (3.2.14)
In physical variables, we have to leading order
Uy + vy, =0 (3.2.15)
1
Uy + VU, = - Py + Vg, (3.2.16)

The pressure is constant across the boundary layer and must be the same as the pressure
just outside. In the inviscid outer flow
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UU, + VU, = —— p,. (3.2.17)
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Since V' = 0 on the wall, p, = —pUU,. Hence, inside the boundary layer:

Uty + vy = UUy + viy,. (3.2.18)

This is the classical boundary layer approximation for high Re flows, due to Prandtl

(1905).



