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2.8.a. Suppression of vertical motion in a stratified fluid

Note: This section should precede §2.8

ref: C. S. Yih.Dynamics of Inhomogeneous Fluids , MacMillan

There is a useful theorem, due to C. S. Yih, that the vertical motion of a stratified fluid
is supressed when the velocity is low.

Consider the three dimensional flow of an inviscid incompressible fluid which is nondif-
fusive :

ux + vy + wz = 0 (2.8.1)

uρx + vρy + wρz = 0 (2.8.2)

ρ(uux + vuy + wuz) = −px (2.8.3)

ρ(uvx + vvy + wvz) = −py (2.8.4)

ρ(uwx + vwy + wwz) = −pz − gρ (2.8.5)

Let us choose the following normalization:

ρ = ρoρ
′, (u, v, w) = U(u′, v′, w′),

(x, y, z) = L(x′, y,′ z′), p = p′ρoU
2

where

L =

(
− 1

ρo

dρo

dz

)−1

, U =
√

gL.

Note that the velocity scale is chosen on dimensional basis alone and may not represent the
actual magnitude. Therefore the dimensionless velocity components need not be all of O(1).
After omitting primes for brevity, we have,

ux + vy + wz = 0 (2.8.6)

uρx + vρy + wρz = 0 (2.8.7)

ρ(uux + vuy + wuz) = −px (2.8.8)

ρuvx + vvy + wvz) = −py (2.8.9)

ρ(uwx + vwy + wwz) = pz − ρ (2.8.10)
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Since L represents the scale of stratification,

ρz = O(1) (2.8.11)

must be true. In lakes or coastal seas, the typical stratification depth is L = O(5m) then√
gL = O(7) m/s, which can be much greater than the flow velocity. Hence we assume

(u, v, w) ≤ O(ε) � 1 (2.8.12)

In physical dimensions, (u, v, w) = O(ε)
√

gL. Eliminating p from eqs (2.8.8) and (2.8.10) we
get

ρx =
∂

∂z
[ρ(uux + vuy + wuz)] − ∂

∂x
[ρ(uwx + vuwy + wwz)]

which implies that
ρx = O(ε2) (2.8.13)

Similarly we eliminate p from (2.8.9) and (2.8.10) and get

ρy = O(ε2) (2.8.14)

It follows from (2.8.7) that
w = O(ε3) (2.8.15)

giving the first indication that the flow is primarily horizontal. Eq (2.8.6), can then be
approximated as

ux + vy = O(ε3) (2.8.16)

From (2.8.8)
ρ(uux + vuy) + O(ε4) = −px (2.8.17)

which implies that
px = O(ε2) (2.8.18)

Similarly, from (2.8.9) we get

ρ(uvx + vvy) + O(ε4) = −py

py = O(ε2) (2.8.19)

From (2.8.10) we get instead
O(ε4) = −pz − ρ (2.8.20)

so that the pressure is hydrostatic.
In summary, at the leading order, the flow of an inviscid stratified fluid is two dimensional

in the horizontal plane. Returning to physical variables, the approximate equations are:

ux + vy = 0 (2.8.21)

ρ(uux + vuy) = −px (2.8.22)
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Figure 2.8.1: Suppression of vertical motion in a stratified fluid

ρ(uvx + vvy) = −py. (2.8.23)

Comparing (2.8.18, 2.8.19) with (2.8.20), we see that the horizontal pressure gradient is
much smaller than the vertical gradient. To understand this let us split p into the static and
dynamic parts,

p = p(s) + p(d) (2.8.24)

where the static part p(s)(z) is related to ρ(s)(z) by

−p(s)
z − ρ(s) = 0. (2.8.25)

Therefore
ρ(uux + vuy) = −p(d)

x (2.8.26)

ρ(uvx + vvy) = −p(d)
y . (2.8.27)

implying that p(d) = O(ε2). Eq (2.8.20) also implies that

−p(d)
z − ρ(d) = O(ε2) (2.8.28)

Thus the dynamic parts p(d) and ρ(d) are of the order (ε2), consistent also with (2.8.13), and
(2.8.14).

Similar to the Taylor-Proudman theorem in rotating fluids, Yih’s theorm has useful
physical implications in stratified fluids. For example a horizontal current encounters a
three dimensional obstacle can only pass the body on the sides in a horizontal plane, but not
above or below. A two dimensional flow incident on a horizontal cylinder of infinite length
will be blocked, leaving a horizontal layer of stagnant fluid in the wake of the same height
as the cylinder. If fluid is withdrawn into a sink, only a thin layer of fluid on the level of the
sink is moved. The last case is discussed in detail next.


