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2.4.a. Release of a fluid pile from a horizontal plane

On a horizontal plane θ = 0. Eq (2.2.22) reduces to

∂h

∂t
= α

∂

∂x

(

h3
∂h

∂x

)

(2.4.a.1)

where α = ρg/3µ. This is a nonlinear diffusion equation where the diffusivity ah3 increases
with the unknown h.

Consider the release of a fluid pile with the initial volume Q confined in a small region.
Note that

∂

∂t

∫

∞

−∞

h(x, t) dx = α

[

h3
∂h

∂x

]

∞

−∞

= 0

Thus
∫

∞

−∞

h(x, t) dx =
∫

∞

−∞

h(x, 0) dx = Q (2.4.a.2)

i.e., the total mass is constant. The initial-value problem governed by (2.4.a.1) and (2.4.a.2)
can be solved by the method of similarity, which reduces the PDE to an ODE (Landau &
Lifshitz).

2.4.a.1. The similarity method

Consider the one-parameter transformation:

h = λah′, x = λbx′, t = λct′ (2.4.a.3)

where (a, b, c) will be chosen to leave the initial value problem ( PDE and initial condition)
unchanged (invariant). Substituting (2.4.a.3) into (2.4.a.1),

λa−c ∂h′

∂t′
= λ4a−2bα

∂

∂x′

(

h′3
∂h′

∂x′

)

(2.4.a.4)
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and then in (2.4.a.2),

λa+b
∫

∞

−∞

h′(x, 0) dx′ = Q (2.4.a.5)

we find the conditions for invariance,

a − c = 4a − 2b; a + b = 0; i.e., b = −a, c = −5a; (2.4.a.6)

implying also
h = λah′, x = λ−ax′, t = λ−5at′ (2.4.a.7)

This suggests the followng combination of variables:

ξ =
x

(At)1/5
, f(ξ) = h(Bt)1/5, (2.4.a.8)

ξ is called a similarity variable. In the space-time plane, at all points on the curve of
constant ξ = x/(Bt)1/5, f = h(Bt)1/5 is the same. Thus for a fixed ξ, h(Bt)1/5 is fixed,
implying that h(Bt)1/5 is a function of ξ, i.e.,

h =
f(ξ)

(Bt)1/5
(2.4.a.9)

Physically the maximum of h decays in time as t−1/5, while the pile spreads in time as t1/5.
Subsituting (2.4.a.9) into (2.4.a.1), and using the facts,

∂h

∂t
= −

1

5

1

B1/5

f

t6/5
−

1

5

ξf ′

B1/5t6/5

∂h

∂x
=

1

B1/5t1/5

f ′

A1/5t1/5

we find

−
1

5

1

B1/5t6/5

(

f + ξ
df

dξ

)

=
α

B4/5t4/5A2/5t2/5

d

dξ

(

f 3
df

dξ

)

From the initial condition, we get
(

At

Bt

)1/5 ∫ ∞

−∞

f(ξ)dξ = Q

For simpliicty let us set
A2/5B3/5 = α (2.4.a.10)

and
(

A

B

)1/5

= Q, (2.4.a.11)

We then get an ODE:

5
d

dξ

(

f 3
df

dξ

)

+
d

dξ
(ξf) = 0 (2.4.a.12)

subject to
∫

∞

−∞

f(ξ)dξ = 1. (2.4.a.13)

at t → 0. Solving (2.4.a.10) and (2.4.a.11) we get

A = αQ3, B =
α

Q2
(2.4.a.14)
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2.4.a.2. Solution

Integrating (2.4.a.12),

5f 3
df

dξ
+ ξf = 0

The integration constant is zero because of symemetry at x = 0 so that f ′(0) = 0. Now

5f 2
df

dξ
+ ξ = 0, implying

5

3
df 3 + ξdξ = 0

Integrating,

f 3 =
3

5

ξ2
0 − ξ2

2
,

where f(ξ0) = 0, we get

f =
[

3

10
(ξ2

0 − ξ2)
]1/3

, − ξ0 < ξ < ξ0; = 0, othewise. (2.4.a.15)

To find ξ0 we use (2.4.a.13),
∫ ξ0

−ξ0
f(ξ)dξ = 1.

or
∫ ξ0

−ξ

[

ξ2

0 − ξ2)
]1/3

dξ =
(

10

3

)1/3

This determines ξ0. The rest is algebra.
Let ζ = (ξ/ξ0)

2, then

dζ = 2ξdξ/ξ0
2, dξ =

ξ0

2

dζ

ζ1/2

∫ ξ0

−ξ

[

ξ2

0 − ξ2)
]1/3

dξ = (ξ0)
5/3

∫

1

0

(1 − ζ)1/3ζ−1/2dζ = (ξ0)
5/3 2

√
π

5

Γ
(

1

3

)

Γ
(

5

6

)

where Γ(z) is the Gamma function, hence

ξ0 =
x0

(αQ3t)1/5
=
(

10

3

)1/5





5

2
√

π

Γ
(

5

6
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3
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3/5

(2.4.a.16)

The maximum width is

x0 =
(

10

3

)1/5





5

2
√
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6
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Γ
(

1

3

)





3/5

(αQ3t)1/5 (2.4.a.17)

The maximum depth is

h(0, t) =
f(0)

(Bt)1/5
=

[

3ξ2
0

10

]1/3 (

Q2

αt

)1/5

(2.4.a.18)


