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2.3 A gravity current

For the highly nonlinear equation, a relatively simple solution is that of a stationary (or
permanent) wave which is profile advancing at a constant speed without changing its shape.
Mathematically the profile is describable as

h(z,t) = h(z — Ct) = h(o), o=z—-Ct (2.3.1)

By the chain rule of differentiation,
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Hence (2.3.30) reduces to an ordinary differential equation,
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Integrating once we get
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Let the gravity current advance along a dry bed, then h = 0 is a part of the solution. The
constant of integration must be set to zero. Introducing the dimensionless variables

h=H.M', o=L.c', with L.= H./tan6, (2.3.3)

where H, is the maximum depth far upstream, we get
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Let the gravity current be uniform far upstream, then
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One of the solution is A’ = 0, representing the dry bed. For the nontrivial solution, we
rewrite 2 . . .
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which can be integrated to give
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This is an implicit relation between h’ and o', and represents a smooth surface decreasing
monotonically from h = 1 at ¢/ ~ —oo to A’ = 0 at the front ¢’ = ¢/, as plotted in Figure
2.3.1. Note from (2.3.8) that do’/dh’ = 0 when A’ = 0, implying infinite slope at the tip of
the gravity current. This infinity violates the original approximation that dh’/do’ = O(1).
Fortunately it is highly localized and does not affect the validity of the theory elsewhere (see
Liu & Mei, 1989, JFM).

Eq. (2.3.6) tells us that the speed of the front is higher for a thicker layer, steeper slope
or smaller viscosity. This relation can be confirmed by a quicker argument. In the fixed
frame of reference, the total flux must be equal to C'H. therefore C' must be equal to the
depth-averaged velocity @ which is given by (2.3.19) with 0h/dx = 0.

A similar analysis has been applied to a fluid-mud which is non-Newtionian characterized
by the yield stress. Laboratory simulations have been reported by Liu & Mei (J. Fluid Mech.
207, 505-529.) who used a kaolinite/water mixture. Figure 2.3.2 shows the setup of the
inclined flume and Figure 2.3 shows the recorded profiles of the gravity current along with
the theory . The agreement is very good, despite the steep front where the approximation
is locally invalid.
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Figure 2.3.1: Gravity current down an inclined plane
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Ficure 7. Experimental set-up for gravity currents down a dry bed.

Figure 2.3.2: Experiment setup for a mud current down an inclined plane. From Liu & Mei
1989.



Spreading of Bingham fluid on an inclined plane 517

34

byl

T T T T T T T 1
0 1 2 3 4 5 6 7 8

X/hcotf

Ficure 8. Comparison between theory and measured profiles. Curve (a) 8 = 1.47°, phase speed =
5.22 em/s, maximum depth = 0.71 cm and & = 0.31 em. The corresponding data points are marked

+. (b) 8 =0.90°, phase speed = 9.46 cm/s, maximum depth =1.22 ¢m and A = 0.51 em. The
corresponding data points are marked x.



