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2.3 A gravity current

For the highly nonlinear equation, a relatively simple solution is that of a stationary (or
permanent) wave which is profile advancing at a constant speed without changing its shape.
Mathematically the profile is describable as

h(x, t) = h(x − Ct) = h(σ), σ = x − Ct (2.3.1)

By the chain rule of differentiation,

∂h(x − Ct)

∂t
=

dh

dσ

∂σ

∂t
= −C

dh

dσ
,

∂h(x − Ct)

∂x
=

dh

dσ

∂σ

∂x
=

dh

dσ

Hence (2.3.30) reduces to an ordinary differential equation,

−C
dh

dσ
+

ρg cos θ

3µ

d

dσ

[

h3

(

tan θ −
dh

dσ

)]

= 0 (2.3.2)

Integrating once we get

−Ch +
ρg cos θ

3µ

[

h3

(

tan θ −
dh

dσ

)]

= constant

Let the gravity current advance along a dry bed, then h = 0 is a part of the solution. The
constant of integration must be set to zero. Introducing the dimensionless variables

h = Hch
′, σ = Lcσ

′, with Lc = Hc/ tan θ, (2.3.3)

where Hc is the maximum depth far upstream, we get

−

3Cµ

ρgH2
c
sin θ

h′ + h′3

(

1 −

dh′

dσ′

)

= 0, (2.3.4)
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Let the gravity current be uniform far upstream, then

h′
→ 1,

dh′

dσ′
→ 0, as σ′

→ −∞. (2.3.5)

It follows that
3Cµ

ρgH2
c
sin θ

= 1

or,

C =
ρgH2

c
sin θ

3µ
(2.3.6)

and

h′

[

−1 + h′2

(

1 −

dh′

dσ′

)]

= 0, (2.3.7)

One of the solution is h′ = 0, representing the dry bed. For the nontrivial solution, we
rewrite

dσ′ = −

h2dh

1 − h2
= dh

[

1 −

1

2

(

1

1 − h
+

1

1 + h

)]

(2.3.8)

which can be integrated to give

h′ +
1

2
log

(

1 − h′

1 + h′

)

= σ′
− σ′

o
(2.3.9)

This is an implicit relation between h′ and σ′, and represents a smooth surface decreasing
monotonically from h = 1 at σ′

∼ −∞ to h′ = 0 at the front σ′ = σ′

o
, as plotted in Figure

2.3.1. Note from (2.3.8) that dσ′/dh′ = 0 when h′ = 0, implying infinite slope at the tip of
the gravity current. This infinity violates the original approximation that dh′/dσ′ = O(1).
Fortunately it is highly localized and does not affect the validity of the theory elsewhere (see
Liu & Mei, 1989, JFM).

Eq. (2.3.6) tells us that the speed of the front is higher for a thicker layer, steeper slope
or smaller viscosity. This relation can be confirmed by a quicker argument. In the fixed
frame of reference, the total flux must be equal to CH. therefore C must be equal to the
depth-averaged velocity u which is given by (2.3.19) with ∂h/∂x = 0.

A similar analysis has been applied to a fluid-mud which is non-Newtionian characterized
by the yield stress. Laboratory simulations have been reported by Liu & Mei (J. Fluid Mech.

207, 505-529.) who used a kaolinite/water mixture. Figure 2.3.2 shows the setup of the
inclined flume and Figure 2.3 shows the recorded profiles of the gravity current along with
the theory . The agreement is very good, despite the steep front where the approximation
is locally invalid.
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Figure 2.3.1: Gravity current down an inclined plane

Figure 2.3.2: Experiment setup for a mud current down an inclined plane. From Liu & Mei
1989.



4


