
LECTURE 2: Stress Conditions at a Fluid-fluid Interface

We proceed by deriving the normal and tangential stress boundary conditions appropriate at a
fluid-fluid interface characterized by an interfacial tension σ.

Consider an interfacial surface S bound by a closed contour C (Figure 1). One may think of there
being a force per unit length of magnitude σ in the s-direction at every point along C that acts
to flatten the surface S. Perform a force balance on a volume element V enclosing the interfacial
surface S defined by the contour C:∫

V
ρ
Du
Dt

dV =
∫

V
f dV +

∫
S

[t(n) + t̂(n̂)] dS +
∫

C
σs d`

Here ` indicates arclength and so d` a length increment along the curve C. t(n) = n · T is the
stress vector, the force/area exerted by the upper (+) fluid on the interface. The stress tensor
is defined in terms of the local fluid pressure and velocity field as T = −p I + µ[∇u + (∇u)T ].
Similarly, the stress exerted on the interface by the lower (-) fluid is t̂(n̂) = n̂ · T̂ = −n · T̂ where
T̂ = −p̂ I + µ̂[∇û + (∇û)T ].

Physical interpretation of terms∫
V

ρ
Du
Dt

dV : inertial force associated with acceleration of fluid within V

∫
V f dV : body forces acting on fluid within V∫
S t(n) dS: hydrodynamic force exerted at interface by fluid +∫
S t̂(n̂) dS: hydrodynamic force exerted at interface by fluid -∫
C σs d` : surface tension force exerted along perimeter C

Figure 1: A surface S and bounding contour C on an interface between two fluids. The upper
fluid (+) has density ρ and viscosity µ; the lower fluid (-), ρ̂ and µ̂. n represents the unit outward
normal to the surface, and n̂ = −n the unit inward normal. m the unit tangent to the contour C
and s the unit vector normal to C but tangent to S.
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Figure 2: A Gaussian fluid pillbox of height and radius ε spanning the interface evolves under the
combined influence of volume and surface forces.

Now if ε is the typical lengthscale of the element V , then the acceleration and body forces will
scale as ε3, but the surface forces will scale as ε2. Hence, in the limit of ε → 0, we have that the
surface forces must balance: ∫

S
[t(n) + t̂(n̂)] dS +

∫
C

σ s d` = 0

Now we have that

t(n) = n ·T , t̂(n) = n̂ · T̂ = − n · T̂

Moreover, the application of Stokes Theorem (see Appendix A) allows us to write∫
C

σs d` =
∫

S
∇sσ − σn (∇s · n) dS

where the tangential gradient operator, defined by

∇s = [I − nn] · ∇ = ∇ − n
∂

∂n

appears because σ and n are defined only on the surface. We proceed by dropping the subscript s
on ∇, with this understanding.

The surface force balance thus becomes:∫
S
[n ·T − n · T̂] dS =

∫
S

σn (∇ · n) − ∇σ dS (1)

Now since the surface element is arbitrary, the integrand must vanish identically. One thus obtains
the interfacial stress balance equation.
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Figure 3: A definitional sketch of a fluid-fluid interface. Carats denote variables in the lower fluid.

Stress Balance Equation

n ·T − n · T̂ = σn (∇ · n) − ∇σ (2)

Interpretation of terms:

n ·T: stress (force/area) exerted by + on - (will generally have both normal and tangential com-
ponents)

n · T̂: stress (force/area) exerted by - on + (will generally have both normal and tangential com-
ponents)

σn (∇ ·n): normal curvature force per unit area associated with local curvature of interface, ∇ ·n.

∇σ: tangential stress associated with gradients in surface tension.

Both normal and tangential stress must be balanced at the interface. We consider each component
in turn.

Normal Stress Balance

Taking n · (2) yields the normal stress balance at the interface:

n ·T · n − n · T̂ · n = σ (∇ · n) (3)

The jump in normal stress across the interface must balance the curvature force per unit area.
We note that a surface with non-zero curvature (∇ · n 6= 0) reflects a jump in normal stress across
the interface.

Tangential Stress Balance

Taking t · (2), where t is any unit vector tangent to the interface, yields the tangential stress
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balance at the interface:

n ·T · t − n · T̂ · t = ∇σ · t (4)

Physical Interpretation:

• the LHS represents the jump in tangential components of the hydrodynamic stress at the
interface

• the RHS represents the tangential stress associated with gradients in σ, as may result from
gradients in temperature or chemical composition at the interface

• the LHS contains only velocity gradients, not pressure; therefore, a non-zero ∇σ at a fluid
interface must always drive motion.

Appendix A

Recall Stokes Theorem: ∫
C

F · ~d` =
∫

S
n · (∇∧ F) dS

Along the contour C, ~d` = m d`, so that we have∫
C

F ·m d` =
∫

S
n · (∇∧ F) dS

Now let F = f ∧ b, where b is an arbitrary constant vector. We thus have∫
C

(f ∧ b) ·m d` =
∫

S
n · (∇∧ (f ∧ b)) dS

Now use standard vector identities to see:

(f ∧ b) ·m = − b · (f ∧m)

∇∧ (f ∧ b) = f(∇ · b)− b(∇ · f) + b · ∇f − f · ∇b

= − b(∇ · f) + b · ∇f

since b is a constant vector. We thus have
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b ·
∫

C
(f ∧m) d` = b ·

∫
S

[n(∇ · f)− (∇f) · n] dS

Since b is arbitrary, we thus have∫
C
(f ∧m) d` =

∫
S

[n(∇ · f)− (∇f) · n] dS

We now choose f = σn, and recall that n ∧m = −s. One thus obtains

−
∫

C
σs d` =

∫
S

[n∇ · (σn) − ∇(σn) · n] dS

=
∫

S
[n∇σ · n + σn(∇ · n)−∇σ − σ(∇n) · n ] dS

We note that

∇σ · n = 0 since ∇σ must be tangent to the surface S,

(∇n) · n = 1
2∇(n · n) = 1

2∇(1) = 0 ,

and so obtain the desired result:∫
C

σs d` =
∫

S
[ ∇σ − σn (∇ · n) ] dS
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