LECTURE 2: Stress Conditions at a Fluid-fluid Interface

We proceed by deriving the normal and tangential stress boundary conditions appropriate at a
fluid-fluid interface characterized by an interfacial tension o.

Consider an interfacial surface S bound by a closed contour C' (Figure 1). One may think of there
being a force per unit length of magnitude ¢ in the s-direction at every point along C' that acts
to flatten the surface S. Perform a force balance on a volume element V' enclosing the interfacial
surface S defined by the contour C":
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Here ¢ indicates arclength and so d¢ a length increment along the curve C. t(n) = n- T is the
stress vector, the force/area exerted by the upper (4) fluid on the interface. The stress tensor
is defined in terms of the local fluid pressure and velocity field as T = —p I + u[Vu + (Vu)?].

Similarly, the stress exerted on the interface by the lower (-) fluid is t(h) = - T = —n - T where
T=—pI+aVa+ (Va)l).

Physical interpretation of terms

D
/ pﬁltl dV': inertial force associated with acceleration of fluid within V'
1%

fv f dV : body forces acting on fluid within V'
Js t(n) dS: hydrodynamic force exerted at interface by fluid +

s t(n) dS: hydrodynamic force exerted at interface by fluid -

/. ¢ 0s dl : surface tension force exerted along perimeter C

p.

Figure 1: A surface S and bounding contour C on an interface between two fluids. The upper
fluid (+) has density p and viscosity p; the lower fluid (-), p and fi. n represents the unit outward
normal to the surface, and i = —n the unit inward normal. m the unit tangent to the contour C
and s the unit vector normal to C' but tangent to S.



Figure 2: A Gaussian fluid pillbox of height and radius € spanning the interface evolves under the
combined influence of volume and surface forces.

Now if € is the typical lengthscale of the element V', then the acceleration and body forces will
scale as €3, but the surface forces will scale as €2. Hence, in the limit of ¢ — 0, we have that the
surface forces must balance:
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Now we have that

Moreover, the application of Stokes Theorem (see Appendix A) allows us to write

/osdﬁz /Vsa—an(vs'n)dS
C S

where the tangential gradient operator, defined by

Vs:[I—nn}-V:V—nai

appears because ¢ and n are defined only on the surface. We proceed by dropping the subscript s
on V, with this understanding.

The surface force balance thus becomes:

/S[n-T—n-’i‘]dS: /San(v-n)—VadS (1)

Now since the surface element is arbitrary, the integrand must vanish identically. One thus obtains
the interfacial stress balance equation.
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Figure 3: A definitional sketch of a fluid-fluid interface. Carats denote variables in the lower fluid.

Stress Balance Equation

n-T —n-T =o0n(V-n — Vo (2)

Interpretation of terms:

n - T: stress (force/area) exerted by + on - (will generally have both normal and tangential com-
ponents)

n - T: stress (force/area) exerted by - on + (will generally have both normal and tangential com-
ponents)

on (V-n): normal curvature force per unit area associated with local curvature of interface, V - n.

Vo: tangential stress associated with gradients in surface tension.

Both normal and tangential stress must be balanced at the interface. We consider each component
in turn.

Normal Stress Balance

Taking n - (2) yields the normal stress balance at the interface:

n-T-n —-—n-T-n=o0(V-n) (3)
The jump in normal stress across the interface must balance the curvature force per unit area.

We note that a surface with non-zero curvature (V - n # 0) reflects a jump in normal stress across
the interface.

Tangential Stress Balance

Taking t - (2), where t is any unit vector tangent to the interface, yields the tangential stress



balance at the interface:

n-T-t —-n-T-t =Vo-t (4)

Physical Interpretation:

e the LHS represents the jump in tangential components of the hydrodynamic stress at the
interface

e the RHS represents the tangential stress associated with gradients in o, as may result from
gradients in temperature or chemical composition at the interface

e the LHS contains only velocity gradients, not pressure; therefore, a non-zero Vo at a fluid
interface must always drive motion.

Appendix A

Recall Stokes Theorem:

/F-d?: /n-(V/\F)dS
C S

Along the contour C, dl = m dl, so that we have

/F-mdz: /n-(V/\F)dS
C S

Now let F = f A b, where b is an arbitrary constant vector. We thus have

/(f/\b)-mdfz /n.(V/\(fAb))dS
C

S

Now use standard vector identities to see:

(fAb)m = —b-(fAm)

VAFAD) = f(V-b)—b(V-f)+b-VF—f-Vb

= —b(V-f)+b-Vf

since b is a constant vector. We thus have



b-/(f/\m) dl = b-/ (V- f)— (Vf)-n]dS
C S
Since b is arbitrary, we thus have
/(f/\m) = / (V- £) — (V£) - n] dS
C S

We now choose f = on, and recall that n A m = —s. One thus obtains

_/C os dl = /S [V - (on) — V(on)-n] dS

:/s mVo -n+on(V-n)—Vo—0(Vn)-n]dS

We note that

Vo -n = 0 since Vo must be tangent to the surface .5,

(Vn)'n = iV(n-n) = V(1) = 0 ,

and so obtain the desired result:

/Casdfz /S[Va—an(v-n)]ds



